Detect-SLAM: Making Object Detection and SLAM Mutually Beneficial
Although significant progress has been made in SLAM and object detection in recent years, there are still a series of challenges for both tasks, e.g., SLAM in dynamic environments and detecting objects in complex environments. To address these challenges, we present a novel robotic vision system, wh...
Saved in:
Published in | 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 1001 - 1010 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although significant progress has been made in SLAM and object detection in recent years, there are still a series of challenges for both tasks, e.g., SLAM in dynamic environments and detecting objects in complex environments. To address these challenges, we present a novel robotic vision system, which integrates SLAM with a deep neural networkbased object detector to make the two functions mutually beneficial. The proposed system facilitates a robot to accomplish tasks reliably and efficiently in an unknown and dynamic environment. Experimental results show that compare to the state-of-the-art robotic vision systems, the proposed system has three advantages: i) it greatly improves the accuracy and robustness of SLAM in dynamic environments by removing unreliable features from moving objects leveraging the object detector, ii) it builds an instance-level semantic map of the environment in an online fashion using the synergy of the two functions for further semantic applications; and iii) it improves the object detector so that it can detect/recognize objects effectively under more challenging conditions such as unusual viewpoints, poor lighting condition, and motion blur, by leveraging the object map. |
---|---|
DOI: | 10.1109/WACV.2018.00115 |