Probabilistic models for supervised dictionary learning
Dictionary generation is a core technique of the bag-of-visual-words (BOV) models when applied to image categorization. Most of previous approaches generate dictionaries by unsupervised clustering techniques, e.g. k-means. However, the features obtained by such kind of dictionaries may not be optima...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2305 - 2312 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dictionary generation is a core technique of the bag-of-visual-words (BOV) models when applied to image categorization. Most of previous approaches generate dictionaries by unsupervised clustering techniques, e.g. k-means. However, the features obtained by such kind of dictionaries may not be optimal for image classification. In this paper, we propose a probabilistic model for supervised dictionary learning (SDLM) which seamlessly combines an unsupervised model (a Gaussian Mixture Model) and a supervised model (a logistic regression model) in a probabilistic framework. In the model, image category information directly affects the generation of a dictionary. A dictionary obtained by this approach is a trade-off between minimization of distortions of clusters and maximization of discriminative power of image-wise representations, i.e. histogram representations of images. We further extend the model to incorporate spatial information during the dictionary learning process in a spatial pyramid matching like manner. We extensively evaluated the two models on various benchmark dataset and obtained promising results. |
---|---|
ISBN: | 1424469848 9781424469840 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2010.5539915 |