Adaptive Classifiers-Ensemble System for Tracking Concept Drift

Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier,...

Full description

Saved in:
Bibliographic Details
Published in2007 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3607 - 3612
Main Authors Nishida, K., Yamauchi, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2007
Subjects
Online AccessGet full text
ISBN1424409721
9781424409723
ISSN2160-133X
DOI10.1109/ICMLC.2007.4370772

Cover

Abstract Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier, many batch classifiers, and a drift detection mechanism. To improve the performance of ACE, we have improved the weighting method, which combines the outputs of classifiers, and have added a new classifier pruning method. Experimental results showed that the enhanced ACE performed well for a synthetic dataset that contained both sudden and gradual changes and recurring concepts.
AbstractList Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier, many batch classifiers, and a drift detection mechanism. To improve the performance of ACE, we have improved the weighting method, which combines the outputs of classifiers, and have added a new classifier pruning method. Experimental results showed that the enhanced ACE performed well for a synthetic dataset that contained both sudden and gradual changes and recurring concepts.
Author Nishida, K.
Yamauchi, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Nishida
  fullname: Nishida, K.
  organization: Hokkaido Univ., Sapporo
– sequence: 2
  givenname: K.
  surname: Yamauchi
  fullname: Yamauchi, K.
  organization: Hokkaido Univ., Sapporo
BookMark eNo1j0FLwzAYQCNOcJv9A3rJH2j9knxN2pOMOnVQ8eAEbyNrv0i0a0tShP37HZynx7s8eAs264eeGLsVkAkB5f2meq2rTAKYDJUBY-QFS0pTCJSIUBoFl2zxL1LM2FwKDalQ6vOaJTF-A4AwGkGqOXtYtXac_C_xqrMxeucpxHTdRzrsO-LvxzjRgbsh8G2wzY_vv3g19A2NE38M3k037MrZLlJy5pJ9PK231Utavz1vqlWdeoliSrVDqYEU7lWLSM5SgyXagkyTC1OAcljoFq3D3OUIWqschCptYSRQi6CW7O6v64loNwZ_sOG4O_-rE4jxTOk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2007.4370772
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424409730
142440973X
EndPage 3612
ExternalDocumentID 4370772
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-6f4260e34b3d44efaec494a8e7c517803f486d4af45f54066350139a8720ed403
IEDL.DBID RIE
ISBN 1424409721
9781424409723
ISSN 2160-133X
IngestDate Wed Aug 27 02:10:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-6f4260e34b3d44efaec494a8e7c517803f486d4af45f54066350139a8720ed403
PageCount 6
ParticipantIDs ieee_primary_4370772
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationTitle 2007 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764023
ssj0000744891
Score 1.4883754
Snippet Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online...
SourceID ieee
SourceType Publisher
StartPage 3607
SubjectTerms Adaptive systems
changing environments
Concept drift
Cybernetics
drift detection
Electronic mail
Information science
Machine learning
multiple classifiers system
Title Adaptive Classifiers-Ensemble System for Tracking Concept Drift
URI https://ieeexplore.ieee.org/document/4370772
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDDiNqmdrwmh0Kogihio1K3yx1mqgLYq6cKv5-wkRSAGtiRSlMQ5-56f_d4RciWtMZGWGbNhBExorrFLWcGMMlpKCDRX3u3zKR5PxcMsmjXI9U4LAwB-8xn03KFfyzcrvXVUWV_wJEA02CRNDLNSq7XjUzAVirTyffH8ShLj1MgtMA_COGA4FZvVui7vWFPbPVXnvBbUBFn_Pp885qW7YfXEH6VXfOYZtcmkfudyw8lrb1uonv78Zef434_aJ91vjR993mWvA9KA5SFp10UeaNXnO-Tm1si1GxOpr5-5sK52NhsuP-BdvQEtHc8pQl-KaU874p3mpRSS3m0WtuiS6Wj4ko9ZVXWBLTCbFyy2zrQeuFDcCAFWghaZkCkkOgqTNOBWpLER0orIItxziMXBSJkmgwCMCPgRaS1XSzgmVEQmsSqSeDOODaHJ8PdnMtQK48Kt156QjmuP-bo01phXTXH69-UzslcSq47_OCetYrOFC0QEhbr0ofAFHWCuGw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeNATKhi_7cGjhc12XydjJgQUiAdIuJF-JkQdBMfFX2_bbRiNB2_bkmZb0_Z5-rx9nxfghmkpA8ESrP1AYSqIMFNKUyy5FIwpTxDu3D7HYX9Kn2bBrAa321wYpZQ7fKba9tLF8uVSbKxU1qEk8gwb3IFdg_s0KLK1toqKAUMal84vTmGJQrM5siHmOz_0sNmMzarMLudZUxk-lfekSqnxks4gHQ3Twt-wfOeP4isOe3oNGFVfXRw5eW1vct4Wn78MHf_7WwfQ-s7yQy9b_DqEmsqOoFGVeUDlrG_C_YNkK7sqIldBc6Ft9WzczT7UO39TqPA8R4b8IgN8wkrvKC2SIdHjeqHzFkx73Unax2XdBbwweJ7jUFvbekUoJ5JSpZkSNKEsVpEI_Cj2iKZxKCnTNNCG8FnOYokki6M7T0nqkWOoZ8tMnQCigYw0D5hpbFYHXyZmACTMF9yMDBuxPYWm7Y_5qrDWmJddcfb342vY609Gw_lwMH4-h_1CZrVqyAXU8_VGXRp-kPMrNyy-AHYZsWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Adaptive+Classifiers-Ensemble+System+for+Tracking+Concept+Drift&rft.au=Nishida%2C+K.&rft.au=Yamauchi%2C+K.&rft.date=2007-01-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=6&rft.spage=3607&rft.epage=3612&rft_id=info:doi/10.1109%2FICMLC.2007.4370772&rft.externalDocID=4370772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon