Adaptive Classifiers-Ensemble System for Tracking Concept Drift
Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier,...
Saved in:
Published in | 2007 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3607 - 3612 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 1424409721 9781424409723 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2007.4370772 |
Cover
Abstract | Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier, many batch classifiers, and a drift detection mechanism. To improve the performance of ACE, we have improved the weighting method, which combines the outputs of classifiers, and have added a new classifier pruning method. Experimental results showed that the enhanced ACE performed well for a synthetic dataset that contained both sudden and gradual changes and recurring concepts. |
---|---|
AbstractList | Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier, many batch classifiers, and a drift detection mechanism. To improve the performance of ACE, we have improved the weighting method, which combines the outputs of classifiers, and have added a new classifier pruning method. Experimental results showed that the enhanced ACE performed well for a synthetic dataset that contained both sudden and gradual changes and recurring concepts. |
Author | Nishida, K. Yamauchi, K. |
Author_xml | – sequence: 1 givenname: K. surname: Nishida fullname: Nishida, K. organization: Hokkaido Univ., Sapporo – sequence: 2 givenname: K. surname: Yamauchi fullname: Yamauchi, K. organization: Hokkaido Univ., Sapporo |
BookMark | eNo1j0FLwzAYQCNOcJv9A3rJH2j9knxN2pOMOnVQ8eAEbyNrv0i0a0tShP37HZynx7s8eAs264eeGLsVkAkB5f2meq2rTAKYDJUBY-QFS0pTCJSIUBoFl2zxL1LM2FwKDalQ6vOaJTF-A4AwGkGqOXtYtXac_C_xqrMxeucpxHTdRzrsO-LvxzjRgbsh8G2wzY_vv3g19A2NE38M3k037MrZLlJy5pJ9PK231Utavz1vqlWdeoliSrVDqYEU7lWLSM5SgyXagkyTC1OAcljoFq3D3OUIWqschCptYSRQi6CW7O6v64loNwZ_sOG4O_-rE4jxTOk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2007.4370772 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781424409730 142440973X |
EndPage | 3612 |
ExternalDocumentID | 4370772 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-6f4260e34b3d44efaec494a8e7c517803f486d4af45f54066350139a8720ed403 |
IEDL.DBID | RIE |
ISBN | 1424409721 9781424409723 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:10:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-6f4260e34b3d44efaec494a8e7c517803f486d4af45f54066350139a8720ed403 |
PageCount | 6 |
ParticipantIDs | ieee_primary_4370772 |
PublicationCentury | 2000 |
PublicationDate | 2007-01-01 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | 2007 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001764023 ssj0000744891 |
Score | 1.4883754 |
Snippet | Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3607 |
SubjectTerms | Adaptive systems changing environments Concept drift Cybernetics drift detection Electronic mail Information science Machine learning multiple classifiers system |
Title | Adaptive Classifiers-Ensemble System for Tracking Concept Drift |
URI | https://ieeexplore.ieee.org/document/4370772 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDDiNqmdrwmh0Kogihio1K3yx1mqgLYq6cKv5-wkRSAGtiRSlMQ5-56f_d4RciWtMZGWGbNhBExorrFLWcGMMlpKCDRX3u3zKR5PxcMsmjXI9U4LAwB-8xn03KFfyzcrvXVUWV_wJEA02CRNDLNSq7XjUzAVirTyffH8ShLj1MgtMA_COGA4FZvVui7vWFPbPVXnvBbUBFn_Pp885qW7YfXEH6VXfOYZtcmkfudyw8lrb1uonv78Zef434_aJ91vjR993mWvA9KA5SFp10UeaNXnO-Tm1si1GxOpr5-5sK52NhsuP-BdvQEtHc8pQl-KaU874p3mpRSS3m0WtuiS6Wj4ko9ZVXWBLTCbFyy2zrQeuFDcCAFWghaZkCkkOgqTNOBWpLER0orIItxziMXBSJkmgwCMCPgRaS1XSzgmVEQmsSqSeDOODaHJ8PdnMtQK48Kt156QjmuP-bo01phXTXH69-UzslcSq47_OCetYrOFC0QEhbr0ofAFHWCuGw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeNATKhi_7cGjhc12XydjJgQUiAdIuJF-JkQdBMfFX2_bbRiNB2_bkmZb0_Z5-rx9nxfghmkpA8ESrP1AYSqIMFNKUyy5FIwpTxDu3D7HYX9Kn2bBrAa321wYpZQ7fKba9tLF8uVSbKxU1qEk8gwb3IFdg_s0KLK1toqKAUMal84vTmGJQrM5siHmOz_0sNmMzarMLudZUxk-lfekSqnxks4gHQ3Twt-wfOeP4isOe3oNGFVfXRw5eW1vct4Wn78MHf_7WwfQ-s7yQy9b_DqEmsqOoFGVeUDlrG_C_YNkK7sqIldBc6Ft9WzczT7UO39TqPA8R4b8IgN8wkrvKC2SIdHjeqHzFkx73Unax2XdBbwweJ7jUFvbekUoJ5JSpZkSNKEsVpEI_Cj2iKZxKCnTNNCG8FnOYokki6M7T0nqkWOoZ8tMnQCigYw0D5hpbFYHXyZmACTMF9yMDBuxPYWm7Y_5qrDWmJddcfb342vY609Gw_lwMH4-h_1CZrVqyAXU8_VGXRp-kPMrNyy-AHYZsWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Adaptive+Classifiers-Ensemble+System+for+Tracking+Concept+Drift&rft.au=Nishida%2C+K.&rft.au=Yamauchi%2C+K.&rft.date=2007-01-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=6&rft.spage=3607&rft.epage=3612&rft_id=info:doi/10.1109%2FICMLC.2007.4370772&rft.externalDocID=4370772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |