Adaptive Classifiers-Ensemble System for Tracking Concept Drift
Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier,...
Saved in:
Published in | 2007 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3607 - 3612 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 1424409721 9781424409723 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2007.4370772 |
Cover
Summary: | Adapting to various types of concept drift is important for dealing with real-world online learning problems. To achieve this, we previously reported an online learning system that uses an ensemble of classifiers, the adaptive classifiers-ensemble (ACE) system. ACE consists of one online classifier, many batch classifiers, and a drift detection mechanism. To improve the performance of ACE, we have improved the weighting method, which combines the outputs of classifiers, and have added a new classifier pruning method. Experimental results showed that the enhanced ACE performed well for a synthetic dataset that contained both sudden and gradual changes and recurring concepts. |
---|---|
ISBN: | 1424409721 9781424409723 |
ISSN: | 2160-133X |
DOI: | 10.1109/ICMLC.2007.4370772 |