Road crack detection using deep convolutional neural network

Automatic detection of pavement cracks is an important task in transportation maintenance for driving safety assurance. However, it remains a challenging task due to the intensity inhomogeneity of cracks and complexity of the background, e.g., the low contrast with surrounding pavement and possible...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 3708 - 3712
Main Authors Lei Zhang, Fan Yang, Zhang, Yimin Daniel, Zhu, Ying Julie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Automatic detection of pavement cracks is an important task in transportation maintenance for driving safety assurance. However, it remains a challenging task due to the intensity inhomogeneity of cracks and complexity of the background, e.g., the low contrast with surrounding pavement and possible shadows with similar intensity. Inspired by recent success on applying deep learning to computer vision and medical problems, a deep-learning based method for crack detection is proposed in this paper. A supervised deep convolutional neural network is trained to classify each image patch in the collected images. Quantitative evaluation conducted on a data set of 500 images of size 3264 χ 2448, collected by a low-cost smart phone, demonstrates that the learned deep features with the proposed deep learning framework provide superior crack detection performance when compared with features extracted with existing hand-craft methods.
ISSN:2381-8549
DOI:10.1109/ICIP.2016.7533052