PoseTrack: A Benchmark for Human Pose Estimation and Tracking

Existing systems for video-based pose estimation and tracking struggle to perform well on realistic videos with multiple people and often fail to output body-pose trajectories consistent over time. To address this shortcoming this paper introduces PoseTrack which is a new large-scale benchmark for v...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 5167 - 5176
Main Authors Andriluka, Mykhaylo, Iqbal, Umar, Insafutdinov, Eldar, Pishchulin, Leonid, Milan, Anton, Gall, Juergen, Schiele, Bernt
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Existing systems for video-based pose estimation and tracking struggle to perform well on realistic videos with multiple people and often fail to output body-pose trajectories consistent over time. To address this shortcoming this paper introduces PoseTrack which is a new large-scale benchmark for video-based human pose estimation and articulated tracking. Our new benchmark encompasses three tasks focusing on i) single-frame multi-person pose estimation, ii) multi-person pose estimation in videos, and iii) multi-person articulated tracking. To establish the benchmark, we collect, annotate and release a new dataset that features videos with multiple people labeled with person tracks and articulated pose. A public centralized evaluation server is provided to allow the research community to evaluate on a held-out test set. Furthermore, we conduct an extensive experimental study on recent approaches to articulated pose tracking and provide analysis of the strengths and weaknesses of the state of the art. We envision that the proposed benchmark will stimulate productive research both by providing a large and representative training dataset as well as providing a platform to objectively evaluate and compare the proposed methods. The benchmark is freely accessible at https://posetrack.net/.
ISSN:1063-6919
DOI:10.1109/CVPR.2018.00542