Learning Deep Structure-Preserving Image-Text Embeddings
This paper proposes a method for learning joint embeddings of images and text using a two-branch neural network with multiple layers of linear projections followed by nonlinearities. The network is trained using a large-margin objective that combines cross-view ranking constraints with within-view n...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5005 - 5013 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes a method for learning joint embeddings of images and text using a two-branch neural network with multiple layers of linear projections followed by nonlinearities. The network is trained using a large-margin objective that combines cross-view ranking constraints with within-view neighborhood structure preservation constraints inspired by metric learning literature. Extensive experiments show that our approach gains significant improvements in accuracy for image-to-text and text-to-image retrieval. Our method achieves new state-of-the-art results on the Flickr30K and MSCOCO image-sentence datasets and shows promise on the new task of phrase localization on the Flickr30K Entities dataset. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2016.541 |