Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification
Making a high-dimensional (e.g., 100K-dim) feature for face recognition seems not a good idea because it will bring difficulties on consequent training, computation, and storage. This prevents further exploration of the use of a high dimensional feature. In this paper, we study the performance of a...
Saved in:
Published in | 2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 3025 - 3032 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Making a high-dimensional (e.g., 100K-dim) feature for face recognition seems not a good idea because it will bring difficulties on consequent training, computation, and storage. This prevents further exploration of the use of a high dimensional feature. In this paper, we study the performance of a high dimensional feature. We first empirically show that high dimensionality is critical to high performance. A 100K-dim feature, based on a single-type Local Binary Pattern (LBP) descriptor, can achieve significant improvements over both its low-dimensional version and the state-of-the-art. We also make the high-dimensional feature practical. With our proposed sparse projection method, named rotated sparse regression, both computation and model storage can be reduced by over 100 times without sacrificing accuracy quality. |
---|---|
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2013.389 |