Biped walking stabilization based on linear inverted pendulum tracking
A novel framework of biped walking stabilization control is introduced. The target robot is a 42 DOF humanoid robot HRP-4C which has a body dimensions close to the average Japanese female. We develop a body posture controller and foot force controllers on the joint position servo of the robot. By ap...
Saved in:
Published in | 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 4489 - 4496 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel framework of biped walking stabilization control is introduced. The target robot is a 42 DOF humanoid robot HRP-4C which has a body dimensions close to the average Japanese female. We develop a body posture controller and foot force controllers on the joint position servo of the robot. By applying this posture/force control, we can regard the robot system as a simple linear inverted pendulum with ZMP delay. After a preliminary experiment to confirm the linear dynamics, we design a tracking controller for walking stabilization. It is evaluated in the experiments of HRP-4C walking and turning on a lab floor. The robot can also perform an outdoor walk on an uneven pavement. |
---|---|
ISBN: | 9781424466740 1424466741 |
ISSN: | 2153-0858 |
DOI: | 10.1109/IROS.2010.5651082 |