Control of a microscale deposition robot using a new adaptive time-frequency filtered iterative learning control

A robocasting manufacturing process and robotic deposition machine are presented in this paper. The process requires that the machine be able to track 3-D trajectories with high precision. Iterative learning control (ILC) is presented as a viable strategy to meet these demands. Typically, practical...

Full description

Saved in:
Bibliographic Details
Published in2004 American Control Conference Proceedings; Volume 6 of 6 Vol. 6; pp. 5144 - 5149 vol.6
Main Authors Bristow, D.A., Alleyne, A.G., Danian Zheng
Format Conference Proceeding Journal Article
LanguageEnglish
Published Piscataway NJ IEEE 01.01.2004
Evanston IL American Automatic Control Council
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A robocasting manufacturing process and robotic deposition machine are presented in this paper. The process requires that the machine be able to track 3-D trajectories with high precision. Iterative learning control (ILC) is presented as a viable strategy to meet these demands. Typically, practical implementation of ILC requires some type of Q-filtering that creates an inherent tradeoff between performance and robustness. This tradeoff can be minimized by using a time-varying Q-filter that has been tailored to the system and reference trajectory. A new adaptive time-frequency Q-filtered ILC algorithm is presented to adaptively construct a tailored time-varying Q-filter. Further, because the approach is adaptive, the performance is not limited by overly conservative uncertainty models. A simulation example is presented to demonstrate that, when designed for a nominal plant, the adaptive Q-filtered ILC has performance comparable to that of a standard, fixed-bandwidth Q-filtered ILC. When a perturbation of the plant is introduced, the adaptive Q-filtered ILC adapts to maintain stability, whereas the fixed-bandwidth Q-filtered ILC becomes unstable. The adaptive algorithm is applied to the robotic deposition machine to demonstrate the ability of the algorithm to achieve high precision in this application.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISBN:9780780383357
0780383354
ISSN:0743-1619
2378-5861
DOI:10.23919/ACC.2004.1384668