Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding

Improving the frame rate is an important aspect in medical ultrasound imaging, particularly in 3D/4D cardiac applications. However, an accurate trade-off between the higher frame rate and image contrast and resolution should be performed. Plane-Wave Imaging (PWI) can potentially achieve frame rates...

Full description

Saved in:
Bibliographic Details
Published in2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2016; pp. 3223 - 3226
Main Authors Matrone, Giulia, Savoia, Alessandro S., Caliano, Giosue, Magenes, Giovanni
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Improving the frame rate is an important aspect in medical ultrasound imaging, particularly in 3D/4D cardiac applications. However, an accurate trade-off between the higher frame rate and image contrast and resolution should be performed. Plane-Wave Imaging (PWI) can potentially achieve frame rates in the order of 10 kHz, as it uses a single unfocused plane wave (and thus a single transmit event) to acquire the image of the entire region of interest. The lack of transmit focusing however causes a significant drop of image quality, which can be restored by coherently compounding several tilted plane-wave frames, at the expense of the frame rate. PWI together with the use of a beamforming algorithm able to achieve a higher image contrast resolution, such as the Delay Multiply And Sum (DMAS), could thus allow to improve image quality achieving a high frame rate at the same time. This paper presents the first simulation results obtained by employing DMAS beamforming and PWI with different transmission angles and coherent compounding. The simulated Point Spread Function (PSF) and cyst-phantom images show that DMAS makes it possible to achieve a high image quality with a reduced number of compounded frames compared to standard Delay And Sum (DAS), and hence it can be used to improve the contrast and resolution of plane-wave images still achieving a very high frame rate.
ISSN:1557-170X
DOI:10.1109/EMBC.2016.7591415