Multiview echocardiography fusion using an electromagnetic tracking system
Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequ...
Saved in:
Published in | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2016; pp. 1078 - 1081 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequently limited acoustic windows, and poor signal to noise ratio. This study proposes a novel approach to combine multiple views into a single image using an electromagnetic tracking system in order to improve the field-of-view. The novel method has several advantages: 1) it does not rely on image information for alignment, and therefore, the method does not require image overlap; 2) the alignment accuracy of the proposed approach is not affected by any poor image quality as in the case of image registration based approaches; 3) in contrast to previous optical tracking based system, the proposed approach does not suffer from line-of-sight limitation; and 4) it does not require any initial calibration. In this pilot project, we were able to show that using a heart phantom, our method can fuse multiple echocardiographic images and improve the field-of view. Quantitative evaluations showed that the proposed method yielded a nearly optimal alignment of image data sets in three-dimensional space. The proposed method demonstrates the electromagnetic system can be used for the fusion of multiple echocardiography images with a seamless integration of sensors to the transducer. |
---|---|
ISSN: | 1557-170X |
DOI: | 10.1109/EMBC.2016.7590890 |