Flexible and Self-Adaptive Sense-and-Compress for Sub-MicroWatt Always-on Sensory Recording
Miniaturized sensory systems for IoT applications experience a severe power burden from their wireless link and/or embedded storage system. Compressive sensing techniques target data compression before storage and transmission to save power, while minimizing information loss. This work proposes a se...
Saved in:
Published in | ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC) pp. 282 - 285 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Miniaturized sensory systems for IoT applications experience a severe power burden from their wireless link and/or embedded storage system. Compressive sensing techniques target data compression before storage and transmission to save power, while minimizing information loss. This work proposes a self-adaptive sense-and-compress system, which consumes only 45-884n W while continuously recording and compressing signals with a bandwidth up to 5kHz. The flexible system uses a combination of off-line Evolutionary Algorithms, and on-line self-adaptivity to constantly adapt to the incoming sensory data statistics, and the current application quality requirements. The 0.27mm 2 sense-and-compress interface is integrated in a 65nm CMOS technology, together with an on-board temperature sensor, or can interface with any external sensor. The scalable, self-adaptive system is moreover heavily optimized for low-power and low-leakage, resulting in a tiny, efficient, yet flexible interface allowing always-on sensory monitoring, while consuming 2.5X less power compared to the current State-of-the-Art. |
---|---|
DOI: | 10.1109/ESSCIRC.2018.8494270 |