Analysis of passive charge balancing for safe current-mode neural stimulation
Charge balancing has been often considered as one of the most critical requirement for neural stimulation circuits. Over the years several solutions have been proposed to precisely balance the charge transferred to the tissue during anodic and cathodic phases. Elaborate dynamic current sources/sinks...
Saved in:
Published in | 2017 IEEE International Symposium on Circuits and Systems (ISCAS) pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Charge balancing has been often considered as one of the most critical requirement for neural stimulation circuits. Over the years several solutions have been proposed to precisely balance the charge transferred to the tissue during anodic and cathodic phases. Elaborate dynamic current sources/sinks with improved matching, and feedback loops have been proposed with a penalty on circuit complexity, area or power consumption. Here we review the dominant assumptions in safe stimulation protocols, and derive mathematical models to determine the effectiveness of passive charge balancing in a typical application scenario. |
---|---|
ISSN: | 2379-447X |
DOI: | 10.1109/ISCAS.2017.8050621 |