Feasibility of varying geo-fence around an unmanned aircraft operation based on vehicle performance and wind

Managing trajectory separation of unmanned aircraft is critical to ensuring accessibility, efficiency, and safety in low altitude airspace. The concept of a geo-fence has emerged as a way to manage trajectory separation. A geo-fence consists of distance buffers that enclose individual trajectories t...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) pp. 1 - 10
Main Authors D'Souza, Sarah, Ishihara, Abe, Nikaido, Ben, Hasseeb, Hashmatullah
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Managing trajectory separation of unmanned aircraft is critical to ensuring accessibility, efficiency, and safety in low altitude airspace. The concept of a geo-fence has emerged as a way to manage trajectory separation. A geo-fence consists of distance buffers that enclose individual trajectories to identify a `keep-in' region and/or enclose areas that identify `keep-out' regions. The `keep-in' geo-fence size can be defined as a static number or calculated as a function of vehicle performance characteristics, state of the airspace, weather, and other unforeseen events such as emergency or disaster response. Given that the fleet of Unmanned Aircraft Systems (UAS) operating in low altitude airspace will be numerous and non-homogeneous, calculating a `keep-in' geo-fence will need to balance operational safety and efficiency. A recently tested UAS Traffic Management (UTM) prototype used a geo-fence size of 30 meters, horizontally and vertically, for every operation submitted. The goal of this work is to determine the feasibility of a generalized, simple algorithm that calculates geo-fence sizes as a function of vehicle performance and potential wind disturbances. The resulting geo-fence size could be smaller or larger because the vehicle performance in the presence of wind is considered, thus leading to trajectory separation that is safe and efficient. In this paper, two simplified methods were developed to determine the feasibility of calculating a geo-fence as a function of vehicle parameters and wind information. The first method calculates the geo-fence using basic vehicle parameters and wind sensor data in a set of algebraic-geometric equations. The second method models a generic PID control system that uses a simplified set of equations of motion for the plant and uses gain scheduling to account for wind disturbances. It was found that the Algebraic-Geometric Geo-fence Algorithm provides geo-fence sizes of approximately 15 meters horizontally and 5 meters vertically, which is much smaller than the UTM static value of 30 meters. In the PID Controller Geo-fence Algorithm it was found that the geo-fence size is further reduced to less than 5 meters, horizontally and vertically. These results reveal that implementing geo-fence calculations provide UTM with the ability to schedule and separate operations based on geofences that are dynamic to vehicle capability and environment, which is more efficient than using a single static geo-fence.
ISSN:2155-7209
DOI:10.1109/DASC.2016.7777987