A Practical Comparison of Motion Planning Techniques for Robotic Legs in Environments with Obstacles
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently, any motion involving st...
Saved in:
Published in | 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology pp. 155 - 162 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently, any motion involving steps is cumbersome - each step can require multiple commands and take many minutes to complete. In this paper, we consider four different algorithms that generate a sequence of commands to take a step. We consider a baseline heuristic, a randomized motion planning algorithm, and two variants of A* search. Results for a variety of terrains are presented, and we discuss the quantitative and qualitative tradeoffs between the approaches. |
---|---|
ISBN: | 9780769536378 0769536379 |
DOI: | 10.1109/SMC-IT.2009.26 |