Large-Scale Inverse and Forward Modeling of Adaptive Resonance in the Tinnitus Decompensation

Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make...

Full description

Saved in:
Bibliographic Details
Published in2006 International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2006; pp. 2585 - 2588
Main Authors Low, Y.F., Trenado, C., Delb, W., D'Amelio, R., Falkai, P., Strauss, D.J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISBN:9781424400324
1424400325
ISSN:1557-170X
DOI:10.1109/IEMBS.2006.259445