LeSiNN: Detecting Anomalies by Identifying Least Similar Nearest Neighbours

We introduce the concept of Least Similar Nearest Neighbours (LeSiNN) and use LeSiNN to detect anomalies directly. Although there is an existing method which is a special case of LeSiNN, this paper is the first to clearly articulate the underlying concept, as far as we know. LeSiNN is the first ense...

Full description

Saved in:
Bibliographic Details
Published inIEEE ... International Conference on Data Mining workshops pp. 623 - 630
Main Authors Guansong Pang, Kai Ming Ting, Albrecht, David
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce the concept of Least Similar Nearest Neighbours (LeSiNN) and use LeSiNN to detect anomalies directly. Although there is an existing method which is a special case of LeSiNN, this paper is the first to clearly articulate the underlying concept, as far as we know. LeSiNN is the first ensemble method which works well with models trained using samples of one instance. LeSiNN has linear time complexity with respect to data size and the number of dimensions, and it is one of the few anomaly detectors which can apply directly to both numeric and categorical data sets. Our extensive empirical evaluation shows that LeSiNN is either competitive to or better than six state-of-the-art anomaly detectors in terms of detection accuracy and runtime.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2375-9259
DOI:10.1109/ICDMW.2015.62