Robust Subspace Segmentation with Block-Diagonal Prior
The subspace segmentation problem is addressed in this paper by effectively constructing an exactly block-diagonal sample affinity matrix. The block-diagonal structure is heavily desired for accurate sample clustering but is rather difficult to obtain. Most current state-of-the-art subspace segmenta...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 3818 - 3825 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The subspace segmentation problem is addressed in this paper by effectively constructing an exactly block-diagonal sample affinity matrix. The block-diagonal structure is heavily desired for accurate sample clustering but is rather difficult to obtain. Most current state-of-the-art subspace segmentation methods (such as SSC[4] and LRR[12]) resort to alternative structural priors (such as sparseness and low-rankness) to construct the affinity matrix. In this work, we directly pursue the block-diagonal structure by proposing a graph Laplacian constraint based formulation, and then develop an efficient stochastic subgradient algorithm for optimization. Moreover, two new subspace segmentation methods, the block-diagonal SSC and LRR, are devised in this work. To the best of our knowledge, this is the first research attempt to explicitly pursue such a block-diagonal structure. Extensive experiments on face clustering, motion segmentation and graph construction for semi-supervised learning clearly demonstrate the superiority of our novelly proposed subspace segmentation methods. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 2575-7075 |
DOI: | 10.1109/CVPR.2014.482 |