Robust Subspace Segmentation with Block-Diagonal Prior

The subspace segmentation problem is addressed in this paper by effectively constructing an exactly block-diagonal sample affinity matrix. The block-diagonal structure is heavily desired for accurate sample clustering but is rather difficult to obtain. Most current state-of-the-art subspace segmenta...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 3818 - 3825
Main Authors Feng, Jiashi, Lin, Zhouchen, Xu, Huan, Yan, Shuicheng
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The subspace segmentation problem is addressed in this paper by effectively constructing an exactly block-diagonal sample affinity matrix. The block-diagonal structure is heavily desired for accurate sample clustering but is rather difficult to obtain. Most current state-of-the-art subspace segmentation methods (such as SSC[4] and LRR[12]) resort to alternative structural priors (such as sparseness and low-rankness) to construct the affinity matrix. In this work, we directly pursue the block-diagonal structure by proposing a graph Laplacian constraint based formulation, and then develop an efficient stochastic subgradient algorithm for optimization. Moreover, two new subspace segmentation methods, the block-diagonal SSC and LRR, are devised in this work. To the best of our knowledge, this is the first research attempt to explicitly pursue such a block-diagonal structure. Extensive experiments on face clustering, motion segmentation and graph construction for semi-supervised learning clearly demonstrate the superiority of our novelly proposed subspace segmentation methods.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
2575-7075
DOI:10.1109/CVPR.2014.482