Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder
Considering the nonlinear and non-stationary characteristics of fault vibration signal in the roller bearing system, an intelligent fault diagnosis model based on wavelet transform and stacked auto-encoder is proposed. This paper firstly uses the combination of digital wavelet frame (DWF) and nonlin...
Saved in:
Published in | The 27th Chinese Control and Decision Conference (2015 CCDC) pp. 4608 - 4613 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Considering the nonlinear and non-stationary characteristics of fault vibration signal in the roller bearing system, an intelligent fault diagnosis model based on wavelet transform and stacked auto-encoder is proposed. This paper firstly uses the combination of digital wavelet frame (DWF) and nonlinear soft threshold method to de-noise fault vibration signal. Then stacked auto-encoder is taken to extract the fault signal feature, which is regarded as the input of BP network classifier. The output results of BP network classifier represent fault categories. In addition, neural network ensemble method is also adopted to greatly improve the recognition rate of fault diagnosis. |
---|---|
ISSN: | 1948-9439 |
DOI: | 10.1109/CCDC.2015.7162738 |