Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning

Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains a difficult problem in complex scenes, because of frequent occlusion by clutter or other objects, similar appearances of different objects,...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1218 - 1225
Main Authors Bae, Seung-Hwan, Yoon, Kuk-Jin
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains a difficult problem in complex scenes, because of frequent occlusion by clutter or other objects, similar appearances of different objects, and other factors. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first propose the tracklet confidence using the detectability and continuity of a tracklet, and formulate a multi-object tracking problem based on the tracklet confidence. The multi-object tracking problem is then solved by associating tracklets in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive associations. Here, for reliable association between tracklets and detections, we also propose a novel online learning method using an incremental linear discriminant analysis for discriminating the appearances of objects. By exploiting the proposed learning method, tracklet association can be successfully achieved even under severe occlusion. Experiments with challenging public datasets show distinct performance improvement over other batch and online tracking methods.
AbstractList Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains a difficult problem in complex scenes, because of frequent occlusion by clutter or other objects, similar appearances of different objects, and other factors. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first propose the tracklet confidence using the detectability and continuity of a tracklet, and formulate a multi-object tracking problem based on the tracklet confidence. The multi-object tracking problem is then solved by associating tracklets in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive associations. Here, for reliable association between tracklets and detections, we also propose a novel online learning method using an incremental linear discriminant analysis for discriminating the appearances of objects. By exploiting the proposed learning method, tracklet association can be successfully achieved even under severe occlusion. Experiments with challenging public datasets show distinct performance improvement over other batch and online tracking methods.
Author Kuk-Jin Yoon
Seung-Hwan Bae
Author_xml – sequence: 1
  givenname: Seung-Hwan
  surname: Bae
  fullname: Bae, Seung-Hwan
– sequence: 2
  givenname: Kuk-Jin
  surname: Yoon
  fullname: Yoon, Kuk-Jin
BookMark eNpNjs1Lw0AUxFepYK09evKyRy-p-5L9yB5r_IRKpVSvYZN9kdV0E7OJ4H9vpAoehjc8fjPMCZn4xiMhZ8AWAExfZi9Pm0XMgC9A6AMy1yoFrrQWAKk4JFNgMomkBj3554_JPARXsFgqyUUip8RvmmIIPV372nmkj0Pdu6gp3rDs6bYz5bvzr_TKBLS08ftPjT3NGl85i75Earz9S1-7UHZu57zp3SfSZdui6cwPtBqNH6tOyVFl6oDz3zsjz7c32-w-Wq3vHrLlKnIxS_uoQF1VUpcWrFaVxCS2qaxSKDgkpdCWV7EZxTBWILCQXAouFDelRa0AeTIjF_vetms-Bgx9vhu3YV0bj80QcpBKaSZjpkb0fI86RMzbcb_pvnKpmRZCJN_LnmwL
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.159
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 1225
ExternalDocumentID 6909555
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-be9ff69cd1d97f6e32d86f81b413c59d4f2a4f20e2715eb64654574acde971e43
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Jul 11 02:17:01 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-be9ff69cd1d97f6e32d86f81b413c59d4f2a4f20e2715eb64654574acde971e43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677906207
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909555
proquest_miscellaneous_1677906207
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.4600825
Snippet Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1218
SubjectTerms Boosting
Computer vision
Confidence
Detectors
Distance learning
Learning
Occlusion
Online
Pattern recognition
Robustness
Tracking
Tracking problem
Training
Trajectory
Title Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning
URI https://ieeexplore.ieee.org/document/6909555
https://www.proquest.com/docview/1677906207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA67e_LkYxXfRPBo1j6SdHN1VURQlkVlb0uTTESEVtz24q83k7a7oB48FEogbZpOZjKZme8j5BwyjfyvhpncJoxnwrFcRI4ZYVMhOUjtQpbvo7x75vdzMe-Ri1UtDACE5DMY4W2I5dvS1HhUduk9OSWE6JO-d9yaWq1OdhKZSS4a7u6ghVPv2Ui1iigkyMYSIp8yZVLFao23eTl5mc4wyYuPYoQsDSwrv1RzsDe3m-ShG2mTZvI-qis9Ml8_QBz_-ylbZHdd2UenK5u1TXpQ7JDNditK24W-9E0d20PXNiTFrNT1sqINOCkNlbus1HiOQ73FM3jmTq-8UbS0LJoWLxMUX9wQl9K8sF3v6zdUV5iGg-qW-gH4FYcCSFvA19dd8nx78zS5Yy1bA3tLonHFNCjnpDI2tipzEtLEjqXzu2JvJo1Qlrsk91cESRYL0BKB3ETGc2NBZTHwdI8MirKAfULRrUltHLkUAQ3zscpTGGsH-GRuHByQIc7o4qMB5Fi0k3lAzrp_tvCLBCMfeQFlvVzEEmEVZRJlh393PSIbKABNDtgxGVSfNZz43UalT4OYfQOcxdH_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT90wEB6xHOBEyyIoXYzEET-y2M7ztbTolU0IAeIWxfYYoUpJ1Zdc-PX1OMlDAg49RIosOXGc8YzHM_N9AIdYGOJ_tdxWLuOikJ5XMvHcSpdLJVAZH7N8r9TsTpw9yIclOFrUwiBiTD7DCd3GWL5rbEdHZcfBk9NSymVYDXZfpn211ig9mSqUkD17d9TDefBtlF7EFDLiY4mxT5VzpVP9grh5fHJ_fUNpXmKSEmhp5Fl5o5yjxTndgMtxrH2iye9J15qJfX4F4_i_H_MBtl9q-9j1wmp9hCWsN2Fj2IyyYanPQ9PI9zC2bUF905hu3rIenpTF2l3eGDrJYcHmWTp1Z9-DWXSsqfuWIBWMXtxTl7KqdmPvH0-ksCgRhxQuCwMIa45EkA2Qr4_bcHf68_Zkxge-Bv6UJdOWG9TeK21d6nThFeaZmyof9sXBUFqpnfBZFa4EsyKVaBRBuclCVNahLlIU-Q6s1E2Nu8DIscldmvicIA2rqa5ynBqP9GRhPe7BFs1o-aeH5CiHydyDg_GflWGZUOyjqrHp5mWqCFhRZUnx6f2u32Btdnt5UV78ujrfh3UShj4j7DOstH87_BL2Hq35GkXuH7u51Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+Online+Multi-object+Tracking+Based+on+Tracklet+Confidence+and+Online+Discriminative+Appearance+Learning&rft.au=Seung-Hwan+Bae&rft.au=Kuk-Jin+Yoon&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1218&rft.epage=1225&rft_id=info:doi/10.1109%2FCVPR.2014.159&rft.externalDocID=6909555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon