Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning

Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains a difficult problem in complex scenes, because of frequent occlusion by clutter or other objects, similar appearances of different objects,...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1218 - 1225
Main Authors Bae, Seung-Hwan, Yoon, Kuk-Jin
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Online multi-object tracking aims at producing complete tracks of multiple objects using the information accumulated up to the present moment. It still remains a difficult problem in complex scenes, because of frequent occlusion by clutter or other objects, similar appearances of different objects, and other factors. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first propose the tracklet confidence using the detectability and continuity of a tracklet, and formulate a multi-object tracking problem based on the tracklet confidence. The multi-object tracking problem is then solved by associating tracklets in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive associations. Here, for reliable association between tracklets and detections, we also propose a novel online learning method using an incremental linear discriminant analysis for discriminating the appearances of objects. By exploiting the proposed learning method, tracklet association can be successfully achieved even under severe occlusion. Experiments with challenging public datasets show distinct performance improvement over other batch and online tracking methods.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
2575-7075
DOI:10.1109/CVPR.2014.159