Reduced-complexity synchronization for high-order coded modulations
This paper focuses on phase noise-impaired communications. An efficient Maximum A-posteriori Probability (MAP) iterative synchronization algorithm, where detection and decoding are performed separately from phase estimation, is proposed. This approach has the following key advantages: (i) its comput...
Saved in:
Published in | 2015 IEEE International Conference on Communications (ICC) pp. 4721 - 4726 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper focuses on phase noise-impaired communications. An efficient Maximum A-posteriori Probability (MAP) iterative synchronization algorithm, where detection and decoding are performed separately from phase estimation, is proposed. This approach has the following key advantages: (i) its computational complexity is relatively low and its performance is near optimal; (ii) it requires very limited statistical knowledge of the phase noise process; and (iii) it enables the direct use of "off-the-shelf" demodulation and decoding blocks. These features are particularly attractive from the implementation viewpoint, as they lead to the design of effective pragmatic high-order coded modulated schemes. The proposed iterative synchronization and decoding algorithm, evaluated for Low-Density Parity-Check (LDPC)-coded pilot symbol-assisted Quadrature Amplitude Modulation (QAM) schemes, entails a negligible energy efficiency loss with respect to optimized joint decoding and phase estimation approaches, with significantly lower computational complexity. |
---|---|
ISSN: | 1550-3607 1938-1883 |
DOI: | 10.1109/ICC.2015.7249069 |