Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds

We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. Fir...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2019 - 2026
Main Authors Berg, Thomas, Jiongxin Liu, Seung Woo Lee, Alexander, Michelle L., Jacobs, David W., Belhumeur, Peter N.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
2575-7075
DOI10.1109/CVPR.2014.259

Cover

Loading…
Abstract We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. First, we introduce "one-vs-most classifiers." By eliminating highly similar species during training, these classifiers achieve more accurate and intuitive results than common one-vs-all classifiers. Second, we show how to estimate spatio-temporal class priors from observations that are sampled at irregular and biased locations. We show how these priors can be used to significantly improve performance. We then show state-of-the-art recognition performance on a new, large dataset that we make publicly available. These recognition methods are integrated into the online field guide, which is also publicly available.
AbstractList We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. First, we introduce "one-vs-most classifiers." By eliminating highly similar species during training, these classifiers achieve more accurate and intuitive results than common one-vs-all classifiers. Second, we show how to estimate spatio-temporal class priors from observations that are sampled at irregular and biased locations. We show how these priors can be used to significantly improve performance. We then show state-of-the-art recognition performance on a new, large dataset that we make publicly available. These recognition methods are integrated into the online field guide, which is also publicly available.
Author Seung Woo Lee
Jacobs, David W.
Jiongxin Liu
Alexander, Michelle L.
Berg, Thomas
Belhumeur, Peter N.
Author_xml – sequence: 1
  givenname: Thomas
  surname: Berg
  fullname: Berg, Thomas
  organization: Columbia Univ., Columbia, MD, USA
– sequence: 2
  surname: Jiongxin Liu
  fullname: Jiongxin Liu
  organization: Columbia Univ., Columbia, MD, USA
– sequence: 3
  surname: Seung Woo Lee
  fullname: Seung Woo Lee
  organization: Columbia Univ., Columbia, MD, USA
– sequence: 4
  givenname: Michelle L.
  surname: Alexander
  fullname: Alexander, Michelle L.
  organization: Columbia Univ., Columbia, MD, USA
– sequence: 5
  givenname: David W.
  surname: Jacobs
  fullname: Jacobs, David W.
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 6
  givenname: Peter N.
  surname: Belhumeur
  fullname: Belhumeur, Peter N.
  organization: Columbia Univ., Columbia, MD, USA
BookMark eNpNjDtPwzAUhQ0qEqV0ZGLJyJJix8_LViIoSJVAPLpGN7FdWUqTYqcD_HoKZWD6jnS-c87IqOs7R8gFozPGKFyXq-eXWUGZmBUSjsgUtGFCA0jGjDwmY0YVzxUwGP3Lp2SaUqhpobQSkqsxmd-GaFOH25tsiXHt8tcGW5fdh87li4h72GwV0g7brMTBrfsYvnAIfZf1PvvdnpMTj21y0z9OyPv93Vv5kC-fFo_lfJmHgpohR6exgdrWinpvOOXao-bGFpYy11itlZXUC9n8tGCVATSmRiGNkArA8wm5OvxuY_-xc2moNiE1rm2xc_0uVUxpDUwIZvbq5UENzrlqG8MG42elgIKSin8DQWFbGw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.259
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 2026
ExternalDocumentID 6909656
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-ae7ac9bdb60ff83037fa738d2d01ecd776d50f45cff839d689a88ba45845699f3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Thu Jul 10 19:12:20 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-ae7ac9bdb60ff83037fa738d2d01ecd776d50f45cff839d689a88ba45845699f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677914418
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909656
proquest_miscellaneous_1677914418
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.3933623
Snippet We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2019
SubjectTerms Accuracy
Birds
Classifiers
Computer vision
Conferences
Estimation
Fine-grained visual categorization
Image recognition
Kernel
large-scale classification
Online
Pattern recognition
Production methods
Recognition
species identification
Training
Visual
Visualization
Title Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds
URI https://ieeexplore.ieee.org/document/6909656
https://www.proquest.com/docview/1677914418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT5zYitgVJI44zeJ44QYVpUIUVWziFnmVKlBStc2Fr8d2klYCDtwiR44Sz8Qz45l5D4AL4ZF8sIBRahBEwhDIkhhBqSjTCYsUle4ccvyIR6_o_j1774DLVS-M1toXn-nQXfpcvipl5Y7K-jaSY9b_2AAbNnCre7Va3UkwwSirubv9LpzayAazVUYhcWwsPvOJU4hZzNZ4m_3B2-TJFXmhMHGQpZ5l5dfW7O3NcAuM2zety0w-wmopQvn1A8Txv5-yDXrrzr5gsrJZO6Cji12w1biiQfOjL-xQy_bQju2B65vpXC0KPrsKHlz5OHy24tXB0Lqp8M4RTdgHvE0XFf8MBg5-opw3LZ5BaQI_twdeh7cvgxFsCBjgNInoEnJNuGRCCRwZQ62xI4aTlKpERbGWihCsssigTLq7TGHKOKWCu9Rrhhkz6T7oFmWhD0CAUinjVIlYZAKZSIqIcS7jTBNhHQpKDsGeW6R8VmNs5M36HILzVgy51XuXzOCFLqtFHmNCmIsG6dHfU4_BppNpXdZ1ArrLeaVPrQOxFGdec74B76nAnw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCJXR5aYNkNEkdc8nD84AbVdgu0CPESt8hPqQIlqG0u_HpsJykS7GFvkSNHiWfimfHMfB_AkQxIPkSiOLMYYWkp4mmCkdKMm5THmil_Djm-JsMHfPmUPy3B8aIXxhgTis9Mz1-GXL6uVO2Pyk5cJMed_7EMq7lvxm26tTrtSQklOG_Yu8M-nLnYhvBFTiH1fCwh90kyRHjCPxA3T_qPN7e-zAv3Ug9aGnhWvmzOweIMNmDcvWtTaPLcq-eyp94-wTj-78d8g-2P3r7oZmG1vsOSKTdho3VGo_ZXn7mhju-hG9uCs_PJVM9K8XoajXwBObpzAjbRwDmq6K-nmnAPeJzMavES9T0ARTVtmzyjykZh7jY8DP7c94eopWBAkzRmcyQMFYpLLUlsLXPmjlpBM6ZTHSdGaUqJzmOLc-Xvck0YF4xJ4ZOvOeHcZjuwUlal-QERzpRKMi0TmUtsYyVjLoRKckOlcykY3YUtv0jFa4OyUbTrswuHnRgKp_k-nSFKU9WzIiGUch8Psr1_T_0Na8P78agYXVxf7cO6l29T5PUTVubT2hw4d2IufwUtegcpqcPn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Birdsnap%3A+Large-Scale+Fine-Grained+Visual+Categorization+of+Birds&rft.au=Berg%2C+Thomas&rft.au=Jiongxin+Liu&rft.au=Seung+Woo+Lee&rft.au=Alexander%2C+Michelle+L.&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2019&rft.epage=2026&rft_id=info:doi/10.1109%2FCVPR.2014.259&rft.externalDocID=6909656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon