Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds
We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. Fir...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2019 - 2026 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 2575-7075 |
DOI | 10.1109/CVPR.2014.259 |
Cover
Loading…
Abstract | We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. First, we introduce "one-vs-most classifiers." By eliminating highly similar species during training, these classifiers achieve more accurate and intuitive results than common one-vs-all classifiers. Second, we show how to estimate spatio-temporal class priors from observations that are sampled at irregular and biased locations. We show how these priors can be used to significantly improve performance. We then show state-of-the-art recognition performance on a new, large dataset that we make publicly available. These recognition methods are integrated into the online field guide, which is also publicly available. |
---|---|
AbstractList | We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. First, we introduce "one-vs-most classifiers." By eliminating highly similar species during training, these classifiers achieve more accurate and intuitive results than common one-vs-all classifiers. Second, we show how to estimate spatio-temporal class priors from observations that are sampled at irregular and biased locations. We show how these priors can be used to significantly improve performance. We then show state-of-the-art recognition performance on a new, large dataset that we make publicly available. These recognition methods are integrated into the online field guide, which is also publicly available. |
Author | Seung Woo Lee Jacobs, David W. Jiongxin Liu Alexander, Michelle L. Berg, Thomas Belhumeur, Peter N. |
Author_xml | – sequence: 1 givenname: Thomas surname: Berg fullname: Berg, Thomas organization: Columbia Univ., Columbia, MD, USA – sequence: 2 surname: Jiongxin Liu fullname: Jiongxin Liu organization: Columbia Univ., Columbia, MD, USA – sequence: 3 surname: Seung Woo Lee fullname: Seung Woo Lee organization: Columbia Univ., Columbia, MD, USA – sequence: 4 givenname: Michelle L. surname: Alexander fullname: Alexander, Michelle L. organization: Columbia Univ., Columbia, MD, USA – sequence: 5 givenname: David W. surname: Jacobs fullname: Jacobs, David W. organization: Univ. of Maryland, College Park, MD, USA – sequence: 6 givenname: Peter N. surname: Belhumeur fullname: Belhumeur, Peter N. organization: Columbia Univ., Columbia, MD, USA |
BookMark | eNpNjDtPwzAUhQ0qEqV0ZGLJyJJix8_LViIoSJVAPLpGN7FdWUqTYqcD_HoKZWD6jnS-c87IqOs7R8gFozPGKFyXq-eXWUGZmBUSjsgUtGFCA0jGjDwmY0YVzxUwGP3Lp2SaUqhpobQSkqsxmd-GaFOH25tsiXHt8tcGW5fdh87li4h72GwV0g7brMTBrfsYvnAIfZf1PvvdnpMTj21y0z9OyPv93Vv5kC-fFo_lfJmHgpohR6exgdrWinpvOOXao-bGFpYy11itlZXUC9n8tGCVATSmRiGNkArA8wm5OvxuY_-xc2moNiE1rm2xc_0uVUxpDUwIZvbq5UENzrlqG8MG42elgIKSin8DQWFbGw |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.259 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 2575-7075 |
EndPage | 2026 |
ExternalDocumentID | 6909656 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-ae7ac9bdb60ff83037fa738d2d01ecd776d50f45cff839d689a88ba45845699f3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Thu Jul 10 19:12:20 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-ae7ac9bdb60ff83037fa738d2d01ecd776d50f45cff839d689a88ba45845699f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677914418 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909656 proquest_miscellaneous_1677914418 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.3933623 |
Snippet | We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2019 |
SubjectTerms | Accuracy Birds Classifiers Computer vision Conferences Estimation Fine-grained visual categorization Image recognition Kernel large-scale classification Online Pattern recognition Production methods Recognition species identification Training Visual Visualization |
Title | Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds |
URI | https://ieeexplore.ieee.org/document/6909656 https://www.proquest.com/docview/1677914418 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT5zYitgVJI44zeJ44QYVpUIUVWziFnmVKlBStc2Fr8d2klYCDtwiR44Sz8Qz45l5D4AL4ZF8sIBRahBEwhDIkhhBqSjTCYsUle4ccvyIR6_o_j1774DLVS-M1toXn-nQXfpcvipl5Y7K-jaSY9b_2AAbNnCre7Va3UkwwSirubv9LpzayAazVUYhcWwsPvOJU4hZzNZ4m_3B2-TJFXmhMHGQpZ5l5dfW7O3NcAuM2zety0w-wmopQvn1A8Txv5-yDXrrzr5gsrJZO6Cji12w1biiQfOjL-xQy_bQju2B65vpXC0KPrsKHlz5OHy24tXB0Lqp8M4RTdgHvE0XFf8MBg5-opw3LZ5BaQI_twdeh7cvgxFsCBjgNInoEnJNuGRCCRwZQ62xI4aTlKpERbGWihCsssigTLq7TGHKOKWCu9Rrhhkz6T7oFmWhD0CAUinjVIlYZAKZSIqIcS7jTBNhHQpKDsGeW6R8VmNs5M36HILzVgy51XuXzOCFLqtFHmNCmIsG6dHfU4_BppNpXdZ1ArrLeaVPrQOxFGdec74B76nAnw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCJXR5aYNkNEkdc8nD84AbVdgu0CPESt8hPqQIlqG0u_HpsJykS7GFvkSNHiWfimfHMfB_AkQxIPkSiOLMYYWkp4mmCkdKMm5THmil_Djm-JsMHfPmUPy3B8aIXxhgTis9Mz1-GXL6uVO2Pyk5cJMed_7EMq7lvxm26tTrtSQklOG_Yu8M-nLnYhvBFTiH1fCwh90kyRHjCPxA3T_qPN7e-zAv3Ug9aGnhWvmzOweIMNmDcvWtTaPLcq-eyp94-wTj-78d8g-2P3r7oZmG1vsOSKTdho3VGo_ZXn7mhju-hG9uCs_PJVM9K8XoajXwBObpzAjbRwDmq6K-nmnAPeJzMavES9T0ARTVtmzyjykZh7jY8DP7c94eopWBAkzRmcyQMFYpLLUlsLXPmjlpBM6ZTHSdGaUqJzmOLc-Xvck0YF4xJ4ZOvOeHcZjuwUlal-QERzpRKMi0TmUtsYyVjLoRKckOlcykY3YUtv0jFa4OyUbTrswuHnRgKp_k-nSFKU9WzIiGUch8Psr1_T_0Na8P78agYXVxf7cO6l29T5PUTVubT2hw4d2IufwUtegcpqcPn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Birdsnap%3A+Large-Scale+Fine-Grained+Visual+Categorization+of+Birds&rft.au=Berg%2C+Thomas&rft.au=Jiongxin+Liu&rft.au=Seung+Woo+Lee&rft.au=Alexander%2C+Michelle+L.&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2019&rft.epage=2026&rft_id=info:doi/10.1109%2FCVPR.2014.259&rft.externalDocID=6909656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |