Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds
We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. Fir...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2019 - 2026 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We address the problem of large-scale fine-grained visual categorization, describing new methods we have used to produce an online field guide to 500 North American bird species. We focus on the challenges raised when such a system is asked to distinguish between highly similar species of birds. First, we introduce "one-vs-most classifiers." By eliminating highly similar species during training, these classifiers achieve more accurate and intuitive results than common one-vs-all classifiers. Second, we show how to estimate spatio-temporal class priors from observations that are sampled at irregular and biased locations. We show how these priors can be used to significantly improve performance. We then show state-of-the-art recognition performance on a new, large dataset that we make publicly available. These recognition methods are integrated into the online field guide, which is also publicly available. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 2575-7075 |
DOI: | 10.1109/CVPR.2014.259 |