Image Co-segmentation via Consistent Functional Maps

Joint segmentation of image sets has great importance for object recognition, image classification, and image retrieval. In this paper, we aim to jointly segment a set of images starting from a small number of labeled images or none at all. To allow the images to share segmentation information with...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 849 - 856
Main Authors Fan Wang, Qixing Huang, Guibas, Leonidas J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.110

Cover

More Information
Summary:Joint segmentation of image sets has great importance for object recognition, image classification, and image retrieval. In this paper, we aim to jointly segment a set of images starting from a small number of labeled images or none at all. To allow the images to share segmentation information with each other, we build a network that contains segmented as well as unsegmented images, and extract functional maps between connected image pairs based on image appearance features. These functional maps act as general property transporters between the images and, in particular, are used to transfer segmentations. We define and operate in a reduced functional space optimized so that the functional maps approximately satisfy cycle-consistency under composition in the network. A joint optimization framework is proposed to simultaneously generate all segmentation functions over the images so that they both align with local segmentation cues in each particular image, and agree with each other under network transportation. This formulation allows us to extract segmentations even with no training data, but can also exploit such data when available. The collective effect of the joint processing using functional maps leads to accurate information sharing among images and yields superior segmentation results, as shown on the iCoseg, MSRC, and PASCAL data sets.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1550-5499
DOI:10.1109/ICCV.2013.110