Co-localization in Real-World Images
In this paper, we tackle the problem of co-localization in real-world images. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images. Although similar problems such as co-segmentation and weakly supervised localizat...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1464 - 1471 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we tackle the problem of co-localization in real-world images. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images. Although similar problems such as co-segmentation and weakly supervised localization have been previously studied, we focus on being able to perform co-localization in real-world settings, which are typically characterized by large amounts of intra-class variation, inter-class diversity, and annotation noise. To address these issues, we present a joint image-box formulation for solving the co-localization problem, and show how it can be relaxed to a convex quadratic program which can be efficiently solved. We perform an extensive evaluation of our method compared to previous state-of-the-art approaches on the challenging PASCAL VOC 2007 and Object Discovery datasets. In addition, we also present a large-scale study of co-localization on ImageNet, involving ground-truth annotations for 3, 624 classes and approximately 1 million images. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2014.190 |