Feasibility of NeuCube spiking neural network architecture for EMG pattern recognition

Multichannel electromyography (EMG) signals have been used as human-machine interface (HMI) for the control of pattern-recognition based prosthetic system in recent years. This paper is a feasibility analysis of using recently proposed NeuCube spiking neural network (SNN) architecture for a 6-class...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Mechatronic Systems pp. 365 - 369
Main Authors Long Peng, Zeng-Guang Hou, Kasabov, Nikola, Gui-Bin Bian, Vladareanu, Luige, Hongnian Yu
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
ISSN2325-0682
2325-0690
DOI10.1109/ICAMechS.2015.7287090

Cover

More Information
Summary:Multichannel electromyography (EMG) signals have been used as human-machine interface (HMI) for the control of pattern-recognition based prosthetic system in recent years. This paper is a feasibility analysis of using recently proposed NeuCube spiking neural network (SNN) architecture for a 6-class recognition problem of hand motions. NeuCube is an integrated environment, which uses SNN reservoir and dynamic evolving SNN classifier. NeuCbube has the advantage of processing complex spatio-temporal data. The preliminary experiments show that Neucube is more efficient for EMG classification than commonly used machine learning techniques since it achieves better accuracy as well as consistent classification outcomes. The performance of NeuCube combined with TD features reaches up to 95.33% accuracy after a careful selection of the features. This paper demonstrates that NeuCube has the potential to be employed in practical applications of myoelectric control.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2325-0682
2325-0690
DOI:10.1109/ICAMechS.2015.7287090