Privacy preserving optics for miniature vision sensors
The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video data has been captured. We propose to use priva...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 314 - 324 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2015.7298628 |
Cover
Loading…
Summary: | The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video data has been captured. We propose to use privacy preserving optics that filter or block sensitive information directly from the incident light-field before sensor measurements are made, adding a new layer of privacy. In addition to balancing the privacy and utility of the captured data, we address trade-offs unique to miniature vision sensors, such as achieving high-quality field-of-view and resolution within the constraints of mass and volume. Our privacy preserving optics enable applications such as depth sensing, full-body motion tracking, people counting, blob detection and privacy preserving face recognition. While we demonstrate applications on macro-scale devices (smartphones, webcams, etc.) our theory has impact for smaller devices. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2015.7298628 |