Privacy preserving optics for miniature vision sensors

The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video data has been captured. We propose to use priva...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 314 - 324
Main Authors Pittaluga, Francesco, Koppal, Sanjeev J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2015.7298628

Cover

Loading…
More Information
Summary:The next wave of micro and nano devices will create a world with trillions of small networked cameras. This will lead to increased concerns about privacy and security. Most privacy preserving algorithms for computer vision are applied after image/video data has been captured. We propose to use privacy preserving optics that filter or block sensitive information directly from the incident light-field before sensor measurements are made, adding a new layer of privacy. In addition to balancing the privacy and utility of the captured data, we address trade-offs unique to miniature vision sensors, such as achieving high-quality field-of-view and resolution within the constraints of mass and volume. Our privacy preserving optics enable applications such as depth sensing, full-body motion tracking, people counting, blob detection and privacy preserving face recognition. While we demonstrate applications on macro-scale devices (smartphones, webcams, etc.) our theory has impact for smaller devices.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2015.7298628