Look at the Driver, Look at the Road: No Distraction! No Accident
The paper proposes an advanced driver-assistance system that correlates the driver's head pose to road hazards by analyzing both simultaneously. In particular, we aim at the prevention of rear-end crashes due to driver fatigue or distraction. We contribute by three novel ideas: Asymmetric appea...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 129 - 136 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2014.24 |
Cover
Loading…
Summary: | The paper proposes an advanced driver-assistance system that correlates the driver's head pose to road hazards by analyzing both simultaneously. In particular, we aim at the prevention of rear-end crashes due to driver fatigue or distraction. We contribute by three novel ideas: Asymmetric appearance-modeling, 2D to 3D pose estimation enhanced by the introduced Fermat-point transform, and adaptation of Global Haar (GHaar) classifiers for vehicle detection under challenging lighting conditions. The system defines the driver's direction of attention (in 6 degrees of freedom), yawning and head-nodding detection, as well as vehicle detection, and distance estimation. Having both road and driver's behaviour information, and implementing a fuzzy fusion system, we develop an integrated framework to cover all of the above subjects. We provide real-time performance analysis for real-world driving scenarios. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2014.24 |