Variational Deep Atmospheric Turbulence Correction for Video
This paper presents a novel variational deep-learning approach for video atmospheric turbulence correction. We modify and tailor a Nonlinear Activation Free Network to video restoration. By including it in a variational inference framework, we boost the model's performance and stability. This i...
Saved in:
Published in | 2023 IEEE International Conference on Image Processing (ICIP) pp. 3568 - 3572 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a novel variational deep-learning approach for video atmospheric turbulence correction. We modify and tailor a Nonlinear Activation Free Network to video restoration. By including it in a variational inference framework, we boost the model's performance and stability. This is achieved through conditioning the model on features extracted by a variational autoencoder (VAE). Furthermore, we enhance these features by making the encoder of the VAE include information pertinent to the image formation via a new loss based on the prediction of parameters of the geometrical distortion and the spatially variant blur responsible for the video sequence degradation. Experiments on a comprehensive synthetic video dataset demonstrate the effectiveness and reliability of the proposed method and validate its superiority compared to existing state-of-the-art approaches. |
---|---|
DOI: | 10.1109/ICIP49359.2023.10222374 |