Efficient Implicit Neural Reconstruction Using LiDAR

Modeling scene geometry using implicit neural representation has revealed its advantages in accuracy, flexibility, and low memory usage. Previous approaches have demonstrated impressive results using color or depth images but still have difficulty handling poor light conditions and large-scale scene...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Robotics and Automation (ICRA) pp. 8407 - 8414
Main Authors Yan, Dongyu, Lyu, Xiaoyang, Shi, Jieqi, Lin, Yi
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Modeling scene geometry using implicit neural representation has revealed its advantages in accuracy, flexibility, and low memory usage. Previous approaches have demonstrated impressive results using color or depth images but still have difficulty handling poor light conditions and large-scale scenes. Methods taking global point cloud as input require accurate registration and ground truth coordinate labels, which limits their application scenarios. In this paper, we propose a new method that uses sparse LiDAR point clouds and rough odometry to reconstruct fine-grained implicit occupancy field efficiently within a few minutes. We introduce a new loss function that supervises directly in 3D space without 2D rendering, avoiding information loss. We also manage to refine poses of input frames in an end-to-end manner, creating consistent geometry without global point cloud registration. As far as we know, our method is the first to reconstruct implicit scene representation from LiDAR-only input. Experiments on synthetic and real-world datasets, including indoor and outdoor scenes, prove that our method is effective, efficient, and accurate, obtaining comparable results with existing methods using dense input.
DOI:10.1109/ICRA48891.2023.10160322