ClothFit: Cloth-Human-Attribute Guided Virtual Try-on Network Using 3D Simulated Dataset
Online clothing shopping has become increasingly popular, but the high rate of returns due to size and fit issues has remained a major challenge. To address this problem, virtual try-on systems have been developed to provide customers with a more realistic and personalized way to try on clothing. In...
Saved in:
Published in | 2023 IEEE International Conference on Image Processing (ICIP) pp. 3484 - 3488 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Online clothing shopping has become increasingly popular, but the high rate of returns due to size and fit issues has remained a major challenge. To address this problem, virtual try-on systems have been developed to provide customers with a more realistic and personalized way to try on clothing. In this paper, we propose a novel virtual try-on method called ClothFit, which can predict the draping shape of a garment on a target body based on the actual size of the garment and human attributes. Unlike existing try-on models, ClothFit considers the actual body proportions of the person and available cloth sizes for clothing virtualization, making it more appropriate for current online apparel outlets. The proposed method utilizes a U-Net-based network architecture that incorporates cloth and human attributes to guide the realistic virtual try-on synthesis. Specifically, we extract features from a cloth image using an auto-encoder and combine them with features from the user's height, weight, and cloth size. The features are concatenated with the features from the U-Net encoder, and the U-Net decoder synthesizes the final virtual try-on image. Our experimental results demonstrate that ClothFit can significantly improve the existing state-of-the-art methods in terms of photo-realistic virtual try-on results. |
---|---|
DOI: | 10.1109/ICIP49359.2023.10222494 |