Automatic Leg Gesture Recognition Based on Portable Electromyography Readers
In this paper, recognition of leg gestures is performed using Linear Discriminant Analysis in order to propose a real application for prosthetic leg considering transfemoral amputee. As results, the confusion matrix shows the performance of the algorithm, where the Class #1 and #3 were the best clas...
Saved in:
Published in | 2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) pp. 3 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, recognition of leg gestures is performed using Linear Discriminant Analysis in order to propose a real application for prosthetic leg considering transfemoral amputee. As results, the confusion matrix shows the performance of the algorithm, where the Class #1 and #3 were the best classes classified (sensitivity is 100%), and Class #2 was the worst classified (sensitivity is 67%). In addition, the probability that the classifier ranks a randomly chosen positive instance higher than a randomly chosen negative for Class #2 and #4 is the same, AUC =0.94, and AUC =1 for Class #1 and #3. Although the hardware and algorithm used have adequate performance, the optimization and improve the real testing conditions are important requirements for real human applications. |
---|---|
ISSN: | 2573-3001 |
DOI: | 10.1109/ICMEAE.2019.00008 |