BERTHop: An Effective Vision-and-Language Model for Chest X-ray Disease Diagnosis
Vision-and-language (V&L) models take image and text as input and learn to capture the associations between them. Prior studies show that pre-trained V&L models can significantly improve the model performance for downstream tasks such as Visual Question Answering (VQA). However, V&L mode...
Saved in:
Published in | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) pp. 3327 - 3336 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vision-and-language (V&L) models take image and text as input and learn to capture the associations between them. Prior studies show that pre-trained V&L models can significantly improve the model performance for downstream tasks such as Visual Question Answering (VQA). However, V&L models are less effective when applied in the medical domain (e.g., on X-ray images and clinical notes) due to the domain gap. In this paper, we investigate the challenges of applying pre-trained V&L models in medical applications. In particular, we identify that the visual representation in general V&L models is not suitable for processing medical data. To overcome this limitation, we propose BERTHop, a transformer-based model based on PixelHop++ and VisualBERT, for better capturing the associations between the two modalities. Experiments on the Openl dataset, a commonly used thoracic disease diagnosis benchmark, show that BERTHop achieves an average Area Under the Curve (AUC) of 98.12% which is 1.62% higher than state-of-the-art (SOTA) while it is trained on a 9x smaller dataset. |
---|---|
ISSN: | 2473-9944 |
DOI: | 10.1109/ICCVW54120.2021.00372 |