Facial Expression Recognition Using Residual Masking Network
Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking Idea to boost the performance of...
Saved in:
Published in | 2020 25th International Conference on Pattern Recognition (ICPR) pp. 4513 - 4519 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking Idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets. |
---|---|
DOI: | 10.1109/ICPR48806.2021.9411919 |