Point-NeRF: Point-based Neural Radiance Fields
Volumetric neural rendering methods like NeRF [34] generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF co...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 5428 - 5438 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR52688.2022.00536 |
Cover
Loading…
Summary: | Volumetric neural rendering methods like NeRF [34] generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30× faster training time. Point-NeRF can be combined with other 3D re-construction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR52688.2022.00536 |