Dynamic Topological Data Analysis for Functional Brain Signals
We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynami...
Saved in:
Published in | 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops) pp. 1 - 4 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a novel dynamic topological data analysis (TDA) framework that builds persistent homology over a time series of 3D functional brain images. The proposed method encodes the time series as a time-ordered sequence of Vietoris-Rips complexes and their corresponding barcodes in studying dynamically changing topological patterns. The method is applied to the resting-state functional magnetic resonance imaging (fMRI) of the human brain. We demonstrate that the dynamic-TDA can capture the topological patterns that are consistently observed across different time points in the resting-state fMRI. |
---|---|
DOI: | 10.1109/ISBIWorkshops50223.2020.9153431 |