Spectral Reflectance Based Heart Rate Measurement from Facial Video
Remote detection of the cardiac pulse has a number of applications in sports and medicine, and can be used to determine an individual's physiological state. Previous approaches to estimate Heart Rate (HR) from video require the subject to remain stationary and employ background information to e...
Saved in:
Published in | 2019 IEEE International Conference on Image Processing (ICIP) pp. 3362 - 3366 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Remote detection of the cardiac pulse has a number of applications in sports and medicine, and can be used to determine an individual's physiological state. Previous approaches to estimate Heart Rate (HR) from video require the subject to remain stationary and employ background information to eliminate illumination interferences. The present research proposes a spectral reflectance-based novel illumination rectification method to eliminate illumination variations in the video. Our method does not rely on the background of the video and is robust to extreme motion interferences (head movements). Furthermore, in order to tackle extreme motion artifacts, the present framework introduces a novel feature point recovery system which recovers the feature tracking points lost during extreme head movements of the subject. Finally, the individual HR estimates from multiple feature points are combined to produce an average HR. We evaluate the efficacy of our framework on the MAHNOB-HCI dataset, a publicly available dataset employed by previous methods. Our HR measurement framework outperformed previous methods and had a root mean square error (RMSE) of 5.21%. |
---|---|
ISSN: | 2381-8549 |
DOI: | 10.1109/ICIP.2019.8803508 |