Highly Deformable Optoelectronics Using Liquid Metal
The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic l...
Saved in:
Published in | 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) pp. 1230 - 1233 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic liquid named 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf 2 ]) is used to realize functions as a light sensor or an optical memory. This ionic liquid is photoresponsive and can undergo a reversible isomerization controlled by light irradiation of UV or Blue; this property was used to realize the liquid-state optoelectronics in this study. In addition, a liquid-state heterojunction was taken advantage of in interconnects between sensing ionic liquid and liquid metal. The liquid-state heterojunction in the microchannels was critical to preventing intermixing of the two liquid components, especially, when the completed devices underwent mechanical deformation. These two important technologies, the photo-switchable ionic liquid and the heterojunction, achieved liquid-state optoelectronics based on liquid materials. |
---|---|
ISSN: | 2160-1968 |
DOI: | 10.1109/MEMS46641.2020.9056451 |