On using PointNet Architecture for Human Body Segmentation

In the case of structured data, such as 2D images, many variants of traditional convolution neural network architectures have been successfully proposed. Learning from unstructured sets of data, such as sets of 3D point clouds, is a challenging task due to numerous reasons among which two most impor...

Full description

Saved in:
Bibliographic Details
Published in2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 253 - 257
Main Authors Jertec, Andrej, Bojanic, David, Bartol, Kristijan, Pribanic, Tomislav, Petkovic, Tomislav, Petrak, Slavenka
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN1849-2266
DOI10.1109/ISPA.2019.8868844

Cover

More Information
Summary:In the case of structured data, such as 2D images, many variants of traditional convolution neural network architectures have been successfully proposed. Learning from unstructured sets of data, such as sets of 3D point clouds, is a challenging task due to numerous reasons among which two most important ones are: 3D point cloud is generally (i) unordered and (ii) sparse data set. Therefore, the architectures have been proposed which are invariant to both ordering and number of points in the point cloud. PointNet is one such architecture, originally introduced and demonstrated on the task of classification and segmentation of the ModelNet40 data set. In this work we study the performance of PointNet on an even more demanding task, segmentation of human body parts. Finding enough training data of enough quality is generally a problem in deep learning, and especially for human body segmentation. To that end we take advantage of SMPL model which provides human body models in many shapes and sizes in an essentially automatic fashion, therefore avoiding a cumbersome procedure of manual collection and preparation of training data. Our results show that the proposed PointNet variant trained using SMPL model provides competitive segmentation results on the task of human body segmentation.
ISSN:1849-2266
DOI:10.1109/ISPA.2019.8868844