A Novel Apex-Time Network for Cross-Dataset Micro-Expression Recognition
The automatic recognition of micro-expression has been boosted ever since the successful introduction of deep learning approaches. As researchers working on such topics are moving to learn from the nature of micro-expression, the practice of using deep learning techniques has evolved from processing...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The automatic recognition of micro-expression has been boosted ever since the successful introduction of deep learning approaches. As researchers working on such topics are moving to learn from the nature of micro-expression, the practice of using deep learning techniques has evolved from processing the entire video clip of micro-expression to the recognition on apex frame. Using the apex frame is able to get rid of redundant video frames, but the relevant temporal evidence of micro-expression would be thereby left out. This paper proposes a novel Apex-Time Network (ATNet)to recognize micro-expression based on spatial information from the apex frame as well as on temporal information from the respective-adjacent frames. Through extensive experiments on three benchmarks, we demonstrate the improvement achieved by learning such temporal information. Specially, the model with such temporal information is more robust in cross-dataset validations. |
---|---|
ISSN: | 2156-8111 |
DOI: | 10.1109/ACII.2019.8925525 |