A Geometric Approach for Cross-View Human Action Recognition using Deep Learning
In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are...
Saved in:
Published in | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 258 - 263 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1849-2266 |
DOI | 10.1109/ISPA.2019.8868717 |
Cover
Abstract | In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are pre-processed using geometric transformations. Then, they are transformed to the spectral domain using well-known transforms. We focus on actions that are close to activities of daily living (ADLs), yet we evaluate our approach using a large-scale action dataset. We cover single-view, cross-view and cross subject cases and thoroughly discuss experimental results and the potential of our approach. |
---|---|
AbstractList | In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are pre-processed using geometric transformations. Then, they are transformed to the spectral domain using well-known transforms. We focus on actions that are close to activities of daily living (ADLs), yet we evaluate our approach using a large-scale action dataset. We cover single-view, cross-view and cross subject cases and thoroughly discuss experimental results and the potential of our approach. |
Author | Papadakis, Antonios Mathe, Eirini Spyrou, Evaggelos Mylonas, Phivos |
Author_xml | – sequence: 1 givenname: Antonios surname: Papadakis fullname: Papadakis, Antonios email: sdi1400141@di.uoa.gr organization: University of Athens – sequence: 2 givenname: Eirini surname: Mathe fullname: Mathe, Eirini email: emathe@iit.demokritos.gr organization: Ionian University, Corfu, Greece – sequence: 3 givenname: Evaggelos surname: Spyrou fullname: Spyrou, Evaggelos email: espyrou@iit.demokritos.gr organization: Institute of Informatics and Telecommunications, National Center for Scientific Research - "Demokritos,", Athens, Greece – sequence: 4 givenname: Phivos surname: Mylonas fullname: Mylonas, Phivos email: fmylonas@ionio.gr organization: Ionian University, Corfu, Greece |
BookMark | eNotkM1KAzEURqMoWGsfQNzkBabmJpkkdzlU-wMDFv-2JZ25UwM2GTIt4tsr2tV3zuYsvmt2EVMkxm5BTAEE3q9e1tVUCsCpc8ZZsGdsgtaBlQ4UaFGesxE4jYWUxlyxyTCErdCuFNqiG7F1xReU9nTIoeFV3-fkmw_epcxnOQ1D8R7oiy-Pex951RxCivyZmrSL4Y-PQ4g7_kDU85p8jr92wy47_znQ5LRj9jZ_fJ0ti_ppsZpVdRGkUIcCmlYph1u0ZYsojAVtrC_RWN1Sqx1ZiVqSEEC-Q9t2JEynwWtVaqc0qjG7--8GItr0Oex9_t6cPlA_lWpQUw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISPA.2019.8868717 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728131405 1728131405 |
EISSN | 1849-2266 |
EndPage | 263 |
ExternalDocumentID | 8868717 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
ID | FETCH-LOGICAL-i203t-1cd3389b975d990671467a59674ded48e72942e001eaf97dfe06f41a435483493 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:27:11 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-1cd3389b975d990671467a59674ded48e72942e001eaf97dfe06f41a435483493 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8868717 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sept. |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) |
PublicationTitleAbbrev | ISPA |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib048504798 ssib042470063 |
Score | 1.7874125 |
Snippet | In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 258 |
SubjectTerms | Cameras Convolutional Neural Networks Feature extraction Human Activity Recognition Skeleton Three-dimensional displays Training Transforms Two dimensional displays |
Title | A Geometric Approach for Cross-View Human Action Recognition using Deep Learning |
URI | https://ieeexplore.ieee.org/document/8868717 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg029rmR3Ms0zkFZaiT3UabvI4hrkM6BP96X9JuonjwluQQQvLa78vL994j5AJZcZorrZgJg5RxyCTTJjQsNyEHLSx-JF7l-yBHE343FdMGudzGwgCAF59B1zX9W74tzNq5ynpxLJHfqyZpoplVsVob2-EhVw5ut_1YuOTpcf2QGfR17_ZpnDgtlzMOP8-PgioeT4a75H6zkkpG8tpdl1nXfP5K0vjfpe6RznfkHh1vMWmfNGDZJuOE3kDx5mpnGZrUScQpslU6cBjJXhbwQb03nyY-zIE-bmRF2HbK-Dm9AljROhnrvEMmw-vnwYjVlRTYIuxHJQuMxauozrQSFuFHKvd_TIWWiluwPAak2DwEhCxIc61sDn2Z8yBFLuWcjTo6IK1lsYRDQhWICIzEawsILrM0DWyM88goCsEgfzwibbcbs1WVLGNWb8Tx38MnZMedSCXaOiWt8n0NZ4jyZXbuj_cLNBek3w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pSA8bf9uDRAtv6Yz0uKIICIQqGG9nab4QQgZgRE_96225gNB68dTs0TdvtvX593_sQujGsOE6FFET5XkwoJJxI5SuSKp-CZNp8JE7l2-ftEX0cs3EJ3W5zYQDAic-gZpvuLl8v1dqGyuphyA2_Fzto1-A-ZXm21mb3UJ8KC7jb55BZ-_SwuMr0GrLeeRlEVs1lt4fr6UdJFYcorQPU24wlF5LMa-ssqanPXzaN_x3sIap-5-7hwRaVjlAJFhU0iPADLN9s9SyFo8JGHBu-ipsWJcnrDD6wi-fjyCU64OeNsMi0rTZ-iu8AVriwY51W0ah1P2y2SVFLgcz8RpART2lzGJWJFEwbAOLC_iFjJrmgGjQNwZBs6oMBLYhTKXQKDZ5SLzZsyoYbZXCMyovlAk4QFsACUNwcXIBRnsSxp0PTDw8CH5RhkKeoYmdjssrtMibFRJz9_foa7bWHve6k2-k_naN9uzq5hOsClbP3NVwazM-SK7fUXwnGqCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+11th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=A+Geometric+Approach+for+Cross-View+Human+Action+Recognition+using+Deep+Learning&rft.au=Papadakis%2C+Antonios&rft.au=Mathe%2C+Eirini&rft.au=Spyrou%2C+Evaggelos&rft.au=Mylonas%2C+Phivos&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=258&rft.epage=263&rft_id=info:doi/10.1109%2FISPA.2019.8868717&rft.externalDocID=8868717 |