A Geometric Approach for Cross-View Human Action Recognition using Deep Learning

In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are...

Full description

Saved in:
Bibliographic Details
Published in2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 258 - 263
Main Authors Papadakis, Antonios, Mathe, Eirini, Spyrou, Evaggelos, Mylonas, Phivos
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN1849-2266
DOI10.1109/ISPA.2019.8868717

Cover

Abstract In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are pre-processed using geometric transformations. Then, they are transformed to the spectral domain using well-known transforms. We focus on actions that are close to activities of daily living (ADLs), yet we evaluate our approach using a large-scale action dataset. We cover single-view, cross-view and cross subject cases and thoroughly discuss experimental results and the potential of our approach.
AbstractList In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are pre-processed using geometric transformations. Then, they are transformed to the spectral domain using well-known transforms. We focus on actions that are close to activities of daily living (ADLs), yet we evaluate our approach using a large-scale action dataset. We cover single-view, cross-view and cross subject cases and thoroughly discuss experimental results and the potential of our approach.
Author Papadakis, Antonios
Mathe, Eirini
Spyrou, Evaggelos
Mylonas, Phivos
Author_xml – sequence: 1
  givenname: Antonios
  surname: Papadakis
  fullname: Papadakis, Antonios
  email: sdi1400141@di.uoa.gr
  organization: University of Athens
– sequence: 2
  givenname: Eirini
  surname: Mathe
  fullname: Mathe, Eirini
  email: emathe@iit.demokritos.gr
  organization: Ionian University, Corfu, Greece
– sequence: 3
  givenname: Evaggelos
  surname: Spyrou
  fullname: Spyrou, Evaggelos
  email: espyrou@iit.demokritos.gr
  organization: Institute of Informatics and Telecommunications, National Center for Scientific Research - "Demokritos,", Athens, Greece
– sequence: 4
  givenname: Phivos
  surname: Mylonas
  fullname: Mylonas, Phivos
  email: fmylonas@ionio.gr
  organization: Ionian University, Corfu, Greece
BookMark eNotkM1KAzEURqMoWGsfQNzkBabmJpkkdzlU-wMDFv-2JZ25UwM2GTIt4tsr2tV3zuYsvmt2EVMkxm5BTAEE3q9e1tVUCsCpc8ZZsGdsgtaBlQ4UaFGesxE4jYWUxlyxyTCErdCuFNqiG7F1xReU9nTIoeFV3-fkmw_epcxnOQ1D8R7oiy-Pex951RxCivyZmrSL4Y-PQ4g7_kDU85p8jr92wy47_znQ5LRj9jZ_fJ0ti_ppsZpVdRGkUIcCmlYph1u0ZYsojAVtrC_RWN1Sqx1ZiVqSEEC-Q9t2JEynwWtVaqc0qjG7--8GItr0Oex9_t6cPlA_lWpQUw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA.2019.8868717
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728131405
1728131405
EISSN 1849-2266
EndPage 263
ExternalDocumentID 8868717
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i203t-1cd3389b975d990671467a59674ded48e72942e001eaf97dfe06f41a435483493
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:11 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1cd3389b975d990671467a59674ded48e72942e001eaf97dfe06f41a435483493
PageCount 6
ParticipantIDs ieee_primary_8868717
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.7874125
Snippet In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More...
SourceID ieee
SourceType Publisher
StartPage 258
SubjectTerms Cameras
Convolutional Neural Networks
Feature extraction
Human Activity Recognition
Skeleton
Three-dimensional displays
Training
Transforms
Two dimensional displays
Title A Geometric Approach for Cross-View Human Action Recognition using Deep Learning
URI https://ieeexplore.ieee.org/document/8868717
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg029rmR3Ms0zkFZaiT3UabvI4hrkM6BP96X9JuonjwluQQQvLa78vL994j5AJZcZorrZgJg5RxyCTTJjQsNyEHLSx-JF7l-yBHE343FdMGudzGwgCAF59B1zX9W74tzNq5ynpxLJHfqyZpoplVsVob2-EhVw5ut_1YuOTpcf2QGfR17_ZpnDgtlzMOP8-PgioeT4a75H6zkkpG8tpdl1nXfP5K0vjfpe6RznfkHh1vMWmfNGDZJuOE3kDx5mpnGZrUScQpslU6cBjJXhbwQb03nyY-zIE-bmRF2HbK-Dm9AljROhnrvEMmw-vnwYjVlRTYIuxHJQuMxauozrQSFuFHKvd_TIWWiluwPAak2DwEhCxIc61sDn2Z8yBFLuWcjTo6IK1lsYRDQhWICIzEawsILrM0DWyM88goCsEgfzwibbcbs1WVLGNWb8Tx38MnZMedSCXaOiWt8n0NZ4jyZXbuj_cLNBek3w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pSA8bf9uDRAtv6Yz0uKIICIQqGG9nab4QQgZgRE_96225gNB68dTs0TdvtvX593_sQujGsOE6FFET5XkwoJJxI5SuSKp-CZNp8JE7l2-ftEX0cs3EJ3W5zYQDAic-gZpvuLl8v1dqGyuphyA2_Fzto1-A-ZXm21mb3UJ8KC7jb55BZ-_SwuMr0GrLeeRlEVs1lt4fr6UdJFYcorQPU24wlF5LMa-ssqanPXzaN_x3sIap-5-7hwRaVjlAJFhU0iPADLN9s9SyFo8JGHBu-ipsWJcnrDD6wi-fjyCU64OeNsMi0rTZ-iu8AVriwY51W0ah1P2y2SVFLgcz8RpART2lzGJWJFEwbAOLC_iFjJrmgGjQNwZBs6oMBLYhTKXQKDZ5SLzZsyoYbZXCMyovlAk4QFsACUNwcXIBRnsSxp0PTDw8CH5RhkKeoYmdjssrtMibFRJz9_foa7bWHve6k2-k_naN9uzq5hOsClbP3NVwazM-SK7fUXwnGqCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+11th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=A+Geometric+Approach+for+Cross-View+Human+Action+Recognition+using+Deep+Learning&rft.au=Papadakis%2C+Antonios&rft.au=Mathe%2C+Eirini&rft.au=Spyrou%2C+Evaggelos&rft.au=Mylonas%2C+Phivos&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=258&rft.epage=263&rft_id=info:doi/10.1109%2FISPA.2019.8868717&rft.externalDocID=8868717