A Geometric Approach for Cross-View Human Action Recognition using Deep Learning
In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are...
Saved in:
Published in | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 258 - 263 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1849-2266 |
DOI | 10.1109/ISPA.2019.8868717 |
Cover
Summary: | In this paper we present an approach for the recognition of human actions which is based on a deep Convolutional Neural Network architecture. More specifically, 3D skeletal joint information is used to create 2D (image) representations. To compensate for potential viewpoint changes, these images are pre-processed using geometric transformations. Then, they are transformed to the spectral domain using well-known transforms. We focus on actions that are close to activities of daily living (ADLs), yet we evaluate our approach using a large-scale action dataset. We cover single-view, cross-view and cross subject cases and thoroughly discuss experimental results and the potential of our approach. |
---|---|
ISSN: | 1849-2266 |
DOI: | 10.1109/ISPA.2019.8868717 |