A Reduced-order Aggregated Model for Parallel Inverter Systems with Virtual Oscillator Control
This paper introduces a reduced-order aggregated model for parallel-connected inverters controlled with virtual oscillator control (VOC). The premise of VOC is to modulate inverter dynamics to emulate those of nonlinear oscillators with the goal of realizing a stable ac microgrid in the absence of c...
Saved in:
Published in | 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper introduces a reduced-order aggregated model for parallel-connected inverters controlled with virtual oscillator control (VOC). The premise of VOC is to modulate inverter dynamics to emulate those of nonlinear oscillators with the goal of realizing a stable ac microgrid in the absence of communication, synchronous generation, or a stiff grid. To obtain a reduced-order model for a system of parallel-connected inverters with VOC, we first formulate a set of scaling laws that describe how the controller and filter parameters of a given inverter depend on its voltage and power rating. Subsequently, we show that N parallel inverters which adhere to this scaling law can be modeled with the same structure and hence the same computational burden of the model of a single inverter. The proposed aggregate model is experimentally validated on a system of three parallel inverters with heterogeneous power ratings. |
---|---|
DOI: | 10.1109/COMPEL.2018.8458494 |