Utilization of unlabeled development data for speaker verification
State-of-the-art speaker verification systems model speaker identity by mapping i-Vectors onto a probabilistic linear discriminant analysis (PLDA) space. Compared to other modeling approaches (such as cosine distance scoring), PLDA provides a more efficient mechanism to separate speaker information...
Saved in:
Published in | 2014 IEEE Spoken Language Technology Workshop (SLT) pp. 418 - 423 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | State-of-the-art speaker verification systems model speaker identity by mapping i-Vectors onto a probabilistic linear discriminant analysis (PLDA) space. Compared to other modeling approaches (such as cosine distance scoring), PLDA provides a more efficient mechanism to separate speaker information from other sources of undesired variabilities and offers superior speaker verification performance. Unfortunately, this efficiency is obtained at the cost of a required large corpus of labeled development data, which is too expensive/unrealistic in many cases. This study investigates a potential solution to resolve this challenge by effectively utilizing unlabeled development data with universal imposter clustering. The proposed method offers +21.9% and +34.6% relative gains versus the baseline system on two public available corpora, respectively. This significant improvement proves the effectiveness of the proposed method. |
---|---|
DOI: | 10.1109/SLT.2014.7078611 |