Cross-lingual link prediction using multimodal relational topic models

There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independ...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) pp. 1 - 8
Main Authors Sakata, Yosuke, Eguchi, Koji
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2016.7550883

Cover

Abstract There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independent generalized relational topic models (CI-gRTM) for predicting unknown relations across different multiple representations of multimodal data. We developed CI-gRTM as a multimodal extension of discriminative relational topic models called generalized relational topic models (gRTM). We demonstrated through experiments with multilingual documents that CI-gRTM can more effectively predict both multilingual representations and relations between two different language representations compared with several state-of-the-art baseline models that enable to predict either multilingual representations or unimodal relations.
AbstractList There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independent generalized relational topic models (CI-gRTM) for predicting unknown relations across different multiple representations of multimodal data. We developed CI-gRTM as a multimodal extension of discriminative relational topic models called generalized relational topic models (gRTM). We demonstrated through experiments with multilingual documents that CI-gRTM can more effectively predict both multilingual representations and relations between two different language representations compared with several state-of-the-art baseline models that enable to predict either multilingual representations or unimodal relations.
Author Sakata, Yosuke
Eguchi, Koji
Author_xml – sequence: 1
  givenname: Yosuke
  surname: Sakata
  fullname: Sakata, Yosuke
  email: sakata@cs25.scitec.kobe-u.ac.jp
  organization: Grad. Sch. of Syst. Inf., Kobe Univ., Kobe, Japan
– sequence: 2
  givenname: Koji
  surname: Eguchi
  fullname: Eguchi, Koji
  email: eguchi@port.kobe-u.ac.jp
  organization: Grad. Sch. of Syst. Inf., Kobe Univ., Kobe, Japan
BookMark eNotT81OwzAYCxIcYOwBEJe-QMuXZPk7oopBpUk7sJ2nNvmCItKm6s-BtyeInWzZlmU_kNshDUjIE4WKUjAvTd18VgyorJQQoDW_IVujNBVgADRIfk_29ZTmuYxh-FrbWGT8LsYJXbBLSEOxztko-jUuoU8uByaM7Z-T6ZLGYIssY5wfyZ1v44zbK27Ief92qj_Kw_G9qV8PZaDaLKXyXmi2k54rKcAKdCiZAZk3mo5zbiQKo5mwtlO6hZ10ne8YB2sBmHbIN-T5vzcg4mWcQt9OP5frO_4LSdNJJA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DOI 10.1109/ICIS.2016.7550883
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509008063
1509008063
EndPage 8
ExternalDocumentID 7550883
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
ID FETCH-LOGICAL-i189t-7ff58246f37650c5ede629062019b33396e59825ccb78a046dbfb230cc0028de3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i189t-7ff58246f37650c5ede629062019b33396e59825ccb78a046dbfb230cc0028de3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7550883
PageCount 8
ParticipantIDs ieee_primary_7550883
PublicationCentury 2000
PublicationDate 20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 20160601
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6010189
Snippet There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Automobiles
Data models
Gaussian distribution
Graphical models
Predictive models
Resource management
Title Cross-lingual link prediction using multimodal relational topic models
URI https://ieeexplore.ieee.org/document/7550883
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbGRhJ2mA7TuaIqkUqQoJK3Sr7fEYV0FQlWfj1-JJQBGJgs2xLjs-Py-f77o6xK8mVVOhkmILwAEWA8kdK6DDxaMRvIUQEAoqz-2QyF3cLueiw650vjG-tyWcYUbG25dsCKnoqGypJvxO8y7p-mzW-Wq2hMh5lw2k-fSSuVhK1_X4kTKn1xXifzb5GamgiL1FVmgg-fgVh_O-nHLDBt2de8LDTOYesg-s-G-ek6kJyLK_0a0A22WCzJQsMST0gavtzUDMH3wrrO2xbApwvlsVmBUGdDud9wObj26d8Erb5EcJVnGZlqJyT6Y1InL8k5AgkWkwoeruXQWY451mCFJ5PAhiVag-ErXHGQw4AQloW-RHrrYs1HrOAK9Aui83IoRA2jjWK1EFsteWQadAnrE8yWG6aEBjLdvqnf1efsT1ah4ZRdc565bbCC6-7S3NZL9onbQGcwg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV8k4GRpA228zFXVC20FRKt1K2yzzZCQFOVZOHX40tCEYiBzYotxT4neX65d3cAV4LFIjZW-AlyR1A4xu6V4tKPHBtxj5AxBokojifRYMbv5mLegOtNLIzrLcVnJqBm6cvXGRb0q6wTCzpOsC3YdrjPRRWtVbsqw27aGfaGj6TWioJ65I-SKSVi9Pdg_HWvSijyEhS5CvDjVxrG_05mH9rfsXnewwZ1DqBhli3o9wjsfAotL-SrR15Zb7UmHwzZ3SNx-5NXagffMu0GrGsJnGvm2eoZvbIgznsbZv3baW_g1xUS_OcwSXM_tlYkNzyy7jMhuiiMNhHlb3c2SBVjLI0MJegTiCpOpKPCWlnlSAcicS1t2CE0l9nSHIHHYpQ2DVXXGs51GErDE4uhlpphKlEeQ4tssFhVSTAW9fJP_r58CTuD6Xi0GA0n96ewS3tS6avOoJmvC3PukDxXF-UGfgLQI6AP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE%2FACIS+15th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Cross-lingual+link+prediction+using+multimodal+relational+topic+models&rft.au=Sakata%2C+Yosuke&rft.au=Eguchi%2C+Koji&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICIS.2016.7550883&rft.externalDocID=7550883