Cross-lingual link prediction using multimodal relational topic models
There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independ...
Saved in:
Published in | 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIS.2016.7550883 |
Cover
Abstract | There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independent generalized relational topic models (CI-gRTM) for predicting unknown relations across different multiple representations of multimodal data. We developed CI-gRTM as a multimodal extension of discriminative relational topic models called generalized relational topic models (gRTM). We demonstrated through experiments with multilingual documents that CI-gRTM can more effectively predict both multilingual representations and relations between two different language representations compared with several state-of-the-art baseline models that enable to predict either multilingual representations or unimodal relations. |
---|---|
AbstractList | There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independent generalized relational topic models (CI-gRTM) for predicting unknown relations across different multiple representations of multimodal data. We developed CI-gRTM as a multimodal extension of discriminative relational topic models called generalized relational topic models (gRTM). We demonstrated through experiments with multilingual documents that CI-gRTM can more effectively predict both multilingual representations and relations between two different language representations compared with several state-of-the-art baseline models that enable to predict either multilingual representations or unimodal relations. |
Author | Sakata, Yosuke Eguchi, Koji |
Author_xml | – sequence: 1 givenname: Yosuke surname: Sakata fullname: Sakata, Yosuke email: sakata@cs25.scitec.kobe-u.ac.jp organization: Grad. Sch. of Syst. Inf., Kobe Univ., Kobe, Japan – sequence: 2 givenname: Koji surname: Eguchi fullname: Eguchi, Koji email: eguchi@port.kobe-u.ac.jp organization: Grad. Sch. of Syst. Inf., Kobe Univ., Kobe, Japan |
BookMark | eNotT81OwzAYCxIcYOwBEJe-QMuXZPk7oopBpUk7sJ2nNvmCItKm6s-BtyeInWzZlmU_kNshDUjIE4WKUjAvTd18VgyorJQQoDW_IVujNBVgADRIfk_29ZTmuYxh-FrbWGT8LsYJXbBLSEOxztko-jUuoU8uByaM7Z-T6ZLGYIssY5wfyZ1v44zbK27Ief92qj_Kw_G9qV8PZaDaLKXyXmi2k54rKcAKdCiZAZk3mo5zbiQKo5mwtlO6hZ10ne8YB2sBmHbIN-T5vzcg4mWcQt9OP5frO_4LSdNJJA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK ESBDL RIE RIL |
DOI | 10.1109/ICIS.2016.7550883 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509008063 1509008063 |
EndPage | 8 |
ExternalDocumentID | 7550883 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK ESBDL RIE RIL |
ID | FETCH-LOGICAL-i189t-7ff58246f37650c5ede629062019b33396e59825ccb78a046dbfb230cc0028de3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:36:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i189t-7ff58246f37650c5ede629062019b33396e59825ccb78a046dbfb230cc0028de3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7550883 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7550883 |
PublicationCentury | 2000 |
PublicationDate | 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 20160601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) |
PublicationTitleAbbrev | ICIS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6010189 |
Snippet | There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Analytical models Automobiles Data models Gaussian distribution Graphical models Predictive models Resource management |
Title | Cross-lingual link prediction using multimodal relational topic models |
URI | https://ieeexplore.ieee.org/document/7550883 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbGRhJ2mA7TuaIqkUqQoJK3Sr7fEYV0FQlWfj1-JJQBGJgs2xLjs-Py-f77o6xK8mVVOhkmILwAEWA8kdK6DDxaMRvIUQEAoqz-2QyF3cLueiw650vjG-tyWcYUbG25dsCKnoqGypJvxO8y7p-mzW-Wq2hMh5lw2k-fSSuVhK1_X4kTKn1xXifzb5GamgiL1FVmgg-fgVh_O-nHLDBt2de8LDTOYesg-s-G-ek6kJyLK_0a0A22WCzJQsMST0gavtzUDMH3wrrO2xbApwvlsVmBUGdDud9wObj26d8Erb5EcJVnGZlqJyT6Y1InL8k5AgkWkwoeruXQWY451mCFJ5PAhiVag-ErXHGQw4AQloW-RHrrYs1HrOAK9Aui83IoRA2jjWK1EFsteWQadAnrE8yWG6aEBjLdvqnf1efsT1ah4ZRdc565bbCC6-7S3NZL9onbQGcwg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV8k4GRpA228zFXVC20FRKt1K2yzzZCQFOVZOHX40tCEYiBzYotxT4neX65d3cAV4LFIjZW-AlyR1A4xu6V4tKPHBtxj5AxBokojifRYMbv5mLegOtNLIzrLcVnJqBm6cvXGRb0q6wTCzpOsC3YdrjPRRWtVbsqw27aGfaGj6TWioJ65I-SKSVi9Pdg_HWvSijyEhS5CvDjVxrG_05mH9rfsXnewwZ1DqBhli3o9wjsfAotL-SrR15Zb7UmHwzZ3SNx-5NXagffMu0GrGsJnGvm2eoZvbIgznsbZv3baW_g1xUS_OcwSXM_tlYkNzyy7jMhuiiMNhHlb3c2SBVjLI0MJegTiCpOpKPCWlnlSAcicS1t2CE0l9nSHIHHYpQ2DVXXGs51GErDE4uhlpphKlEeQ4tssFhVSTAW9fJP_r58CTuD6Xi0GA0n96ewS3tS6avOoJmvC3PukDxXF-UGfgLQI6AP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE%2FACIS+15th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Cross-lingual+link+prediction+using+multimodal+relational+topic+models&rft.au=Sakata%2C+Yosuke&rft.au=Eguchi%2C+Koji&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICIS.2016.7550883&rft.externalDocID=7550883 |