Cross-lingual link prediction using multimodal relational topic models
There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independ...
Saved in:
Published in | 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIS.2016.7550883 |
Cover
Summary: | There are increasing demands for improved analysis of multimodal data that consist of multiple representations, such as multilingual documents and text-annotated images. One promising approach for analyzing such multimodal data is latent topic models. In this paper, we propose conditionally independent generalized relational topic models (CI-gRTM) for predicting unknown relations across different multiple representations of multimodal data. We developed CI-gRTM as a multimodal extension of discriminative relational topic models called generalized relational topic models (gRTM). We demonstrated through experiments with multilingual documents that CI-gRTM can more effectively predict both multilingual representations and relations between two different language representations compared with several state-of-the-art baseline models that enable to predict either multilingual representations or unimodal relations. |
---|---|
DOI: | 10.1109/ICIS.2016.7550883 |