Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes

Objective. Astrocytes respond to various stimuli resulting in intracellular Ca2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 14; no. 3; p. 035001
Main Authors Raos, B J, Graham, E S, Unsworth, C P
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective. Astrocytes respond to various stimuli resulting in intracellular Ca2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca2+ signals in vivo. Approach. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca2+ transients in human hNT astrocytes. Main results. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca2+. These Ca2+ transients then propagate to adjacent astrocytes as intercellular Ca2+ waves. Significance. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.
Bibliography:JNE-101505.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2552/aa5f27