Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenyle...
Saved in:
Published in | Angewandte Chemie Vol. 127; no. 14; pp. 4423 - 4426 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
27.03.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two‐point‐probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub‐ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
Ein MOF mit feiner Nase: Bisherige Versuche zur Verwendung von Metall‐organischen Gerüsten (MOFs) als chemische Sensoren wurden durch eine schlechte Signaltransduktion aufgrund fehlender elektrischer Leitung erschwert. Ein neues leitfähiges 2D‐MOF kann zur chemiresistiven Detektion von Ammoniak genutzt werden. Die Empfindlichkeit lässt sich durch die Wahl des Metallschwingungsknotens variieren. |
---|---|
Bibliography: | Sloan Foundation ark:/67375/WNG-39XZB40Q-7 Research Corporation for Science Advancement ArticleID:ANGE201411854 U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - No. DE-SC0001088 NSF - No. ECS-0335765 Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS-0335765. Army Research Office istex:621B3CCA48DB21474D80756F82DB3CCB8B3AD03F Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE‐SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS‐0335765. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201411854 |